Nižje tveganje pri upravljanju kmetijstva za vlado z uporabo regresije podpornih vektorjev s parametri dinamične optimizacije

Avtorji

  • Chien-Pang Lee National Kaohsiung Marine University, Department of Maritime Information and Technology

DOI:

https://doi.org/10.4335/15.2.243-261(2017)

Ključne besede:

oblikovanje kmetijske politike, upravljanje kmetijstva, regresijski model podpornih vektorjev, metoda vzorčenja, analiza masovnih podatkov

Povzetek

Dobra kmetijska politika lahko zmanjša tveganje pri upravljanju kmetijstva. V preteklosti so se kot pomoč pri upravljanju kmetijstva vedno uporabljale tradicionalne statistične metode. Vendar pa predpostavke o tradicionalnih metodah morda ne ustrezajo realnim podatkom, ki bi vplivali na odločitve o upravljanju kmetijstva. Iz tega razloga je v tem prispevku uporabljena analiza masovnih podatkov, s katero se predlaga nov napovedni model brez kakršne koli predpostavke o napovedovanju kmetijske proizvodnje za znižanje tveganja. Glede na rezultat je v smislu natančnosti napovedovanja predlagani model boljši kot obstoječi modeli. Skladno s tem se lahko predlagani model priporoči za zmanjševanje tveganja pri vladnem upravljanju kmetijstva.

Biografija avtorja

  • Chien-Pang Lee, National Kaohsiung Marine University, Department of Maritime Information and Technology

    Assistant Professor

Literatura

Ahlburg, D. A. (1982) How Accurate are the U.S. Bureau of the Census Projections of Total Live Births?, Journal of Forecasting,1, pp. 365-374.
Ao, Z., Ou, X-Q. & Zhu, S. (2011) A New Optimization Approach for Grey Model GM(1,1), In: Lin, S. & Huang X (eds) Advanced Research on Computer Education, Simulation and Modeling, vol 175. Communications in Computer and Information Science (Berlin, Heidelberg: Springer), pp 117-122.
Boser, B. E., Guyon, I. M. & Vapnik, V. N. (1992) A training algorithm for optimal margin classifiers. Paper presented at the Proceedings of the fifth annual workshop on Computational learning theory, Pittsburgh, Pennsylvania, USA.
Cervantes, J., Li, X., Yu, W. & Li, K. (2008) Support vector machine classification for large data sets via minimum enclosing ball clustering, Neurocomputing, 71, pp. 611-619.
Chang, T-Y. (2011) The influence of agricultural policies on agriculture structure adjustment in Taiwan: An analysis of off-farm labor movement, China Agricultural Economic Review, 3(1), pp. 67-79
Coshall, J. T. (2009) Combining volatility and smoothing forecasts of UK demand for international tourism, Tourism Management, 30(4), pp. 495-511.
DeLurgio, S.A. (1998) Forecasting Principles and Applications. 1 edn. (New York: Irwin/McGraw-Hill).
Drucker, H., Burges, C. J. C., Kaufman, L., Smola, A. J. & Vapnik, V. (1996) Support Vector Regression Machines. Paper presented at the NIPS'1996.
Huang, S-C. (2008) Online option price forecasting by using unscented Kalman filters and support vector machines, Expert Systems with Applications, 34(4), pp. 2819-2825.
Huang, M. (2015) Agricultural Economic Evaluation Based on Improved Support Vector Regression, 2015 8th International Conference on Intelligent Computation Technology and Automation (ICICTA), pp. 118-121.
Hsu, L-C. (2011) Using improved grey forecasting models to forecast the output of opto-electronics industry, Expert Systems with Applications, 38(11), pp. 13879-13885.
Kordos, M. & Rusiecki, A. (2015) Reducing noise impact on MLP training, Soft Computing, 20(1), pp. 49-65.
Lavanya, K., Raguchander, T. & Iyengar, N. C. S. (2013) SVM Regression and SONN based approach for seasonal crop price prediction, International Journal of u-and e-Service, Science and Technology, 6, pp. 155-168.
Lee, C-P. & Leu, Y. (2011) A novel hybrid feature selection method for microarray data analysis, Applied Soft Computing, 11(1), pp. 208-213.
Lee, C-P., Lin, W-C. & Yang, C-C. (2014) A strategy for forecasting option price using fuzzy time series and least square ‎support vector regression with a bootstrap model, Scientia Iranica, 21, pp. 815-825.
Lee, C-P., Shieh, G-J., Yiu, T-J. & Kuo, B-J. (2013) The strategy to simulate the cross-pollination rate for the co-existence of genetically modified (GM) and non-GM crops by using FPSOSVR, Chemometrics and Intelligent Laboratory Systems, 122, pp. 50-57.
Lewis, J. (2014) Bayesian Restricted Likelihood Methods. (Electronic Thesis or Dissertation), available at: https://etd.ohiolink.edu/ (December 12, 2016).
Li, B., Zheng, D., Sun, L. & Yang, S. (2007) Exploiting multi-scale support vector regression for image compression, Neurocomputing, 70(16-18), pp. 3068-3074.
Liang, X., Zhang, H., Xiao, J. & Chen, Y. (2009) Improving option price forecasts with neural networks and support vector regressions, Neurocomputing, 72(13-15), pp. 3055-3065.
Liao, D. G. & Luo, Y. X. (2011) Grey new information GOM(1,1) model and its application based on opposite-direction accumulated generating and background value optimization, Advanced Materials Research, 321, pp. 33-36.
Lin, H-C. & Kao, T-M. (2006) The economic impact from agricultural products loss caused by natural disasters and regional input-output analysis in Taiwa, Taiwanese Agricultural Economic Review, 12, pp.105-138.
Meza, F. J., Hansen, J. W. & Osgood, D. (2008) Economic value of seasonal climate forecasts for agriculture: review of ex-ante assessments and recommendations for future research, Journal of Applied Meteorology and Climatology, 47, pp. 1269-1286.
Nieh, S.-C., Lin, W.-S., Hsu, Y.-H., Shieh, G.-J. & Kuo, B.-J. (2014) The effect of flowering time and distance between pollen source and recipient on Maize, GM Crops & Food: Biotechnology in Agriculture and the Food Chain, 5(4), pp. 21-33.
Ou, S-L. (2012) Forecasting agricultural output with an improved grey forecasting model based on the genetic algorithm, Computers and Electronics in Agriculture, 85, pp. 33-39.
Singh, S. (2009) Global food crisis: magnitude, causes and policy measures, International Journal of Social Economics, 36(1/2), pp. 23-36.
Slabe-Erker, R., Klun, M. & Lampič, B. (2016) Assessment of agricultural sustainability at regional level in Slovenia, Lex Localis-Journal of Local Self-Government, 14(2), pp. 209-223.
Viala, E. (2008) Water for food, water for life a comprehensive assessment of water management in agriculture, Irrigation and Drainage Systems, 22(1), pp. 127-129.
Wu, W-Y., Hsiao, S-W. & Tsai, C-H. (2008) Forecasting and Evaluating the Tourist Hotel Industry Performance in Taiwan Based on Grey Theory, Tourism and Hospitality Research, 8(2), pp. 137-152.
Xia, Z., Zhi, Z., Tong, S., Kun, S. & Yanli, S. (2014) Improved GM (1, 1) model for sea level change prediction, 2014 IEEE Geoscience and Remote Sensing Symposium, pp. 4469-4472.
Xiong, T., Li, C., Bao, Y., Hu, Z. & Zhang, L. (2015) A combination method for interval forecasting of agricultural commodity futures prices, Knowledge-Based Systems, 77, pp. 92-102.
Yousefi, M., Khoshnevisan, B., Shamshirband, S., Motamedi, S., Nasir, M. H. N., Arif, M., & Ahmad, R. (2015) Support vector regression methodology for prediction of output energy in rice production, Stochastic Environmental Research and Risk Assessment, 29(8), pp. 2115-2126.
Zheng, M-C. & Chou, J-H. (2011) A novel nonlinear forecasting model for output of bike industry by Grey model and Taguchi-differential evolution algorithm, African Journal of Business Management, 5(12), pp. 4945-4954.
Zięba, M. & Tomczak, J. M. (2014) Boosted SVM with active learning strategy for imbalanced data, Soft Computing, 19(12), pp. 3357-3368.

Objavljeno

2017-04-01

Številka

Rubrika

Article

Kako citirati

Nižje tveganje pri upravljanju kmetijstva za vlado z uporabo regresije podpornih vektorjev s parametri dinamične optimizacije. (2017). Lex Localis - Journal of Local Self-Government, 15(2), 243-261. https://doi.org/10.4335/15.2.243-261(2017)