"Hydrogen Production from Natural Gas: Policy Implications and Technological Innovations"

Authors

  • Gang Xiong 1Research Institute of Natural Gas Technology, PetroChina Southwest Oil & Gasfield Company, Chengdu 610213, Sichuan, China 2National Energy R&D Center of High Sulfur Gas Exploitation, Chengdu 610213, Sichuan, China 3High Sulfur Gas Exploitation Pilot Test Center, CNPC, Chengdu 610213, Sichuan, China
  • Zongshe Liu 1Research Institute of Natural Gas Technology, PetroChina Southwest Oil & Gasfield Company, Chengdu 610213, Sichuan, China 2National Energy R&D Center of High Sulfur Gas Exploitation, Chengdu 610213, Sichuan, China 3High Sulfur Gas Exploitation Pilot Test Center, CNPC, Chengdu 610213, Sichuan, China
  • Tong Ding 1Research Institute of Natural Gas Technology, PetroChina Southwest Oil & Gasfield Company, Chengdu 610213, Sichuan, China 2National Energy R&D Center of High Sulfur Gas Exploitation, Chengdu 610213, Sichuan, China 3High Sulfur Gas Exploitation Pilot Test Center, CNPC, Chengdu 610213, Sichuan, China
  • Qisong Liu 1Research Institute of Natural Gas Technology, PetroChina Southwest Oil & Gasfield Company, Chengdu 610213, Sichuan, China 2National Energy R&D Center of High Sulfur Gas Exploitation, Chengdu 610213, Sichuan, China 3High Sulfur Gas Exploitation Pilot Test Center, CNPC, Chengdu 610213, Sichuan, China
  • Ke Liu 1Research Institute of Natural Gas Technology, PetroChina Southwest Oil & Gasfield Company, Chengdu 610213, Sichuan, China 2National Energy R&D Center of High Sulfur Gas Exploitation, Chengdu 610213, Sichuan, China 3High Sulfur Gas Exploitation Pilot Test Center, CNPC, Chengdu 610213, Sichuan, China
  • Changjie Chen 1Research Institute of Natural Gas Technology, PetroChina Southwest Oil & Gasfield Company, Chengdu 610213, Sichuan, China 2National Energy R&D Center of High Sulfur Gas Exploitation, Chengdu 610213, Sichuan, China 3High Sulfur Gas Exploitation Pilot Test Center, CNPC, Chengdu 610213, Sichuan, China

DOI:

https://doi.org/10.52152/3121

Keywords:

hydrogen energy; renewable energy; hydrogen production; natural gas

Abstract

Over the past decades, global energy supply has been dominated by the top three fossil energy (petroleum, coal, and natural gas). However, fossil energy is non-renewable and the energy supply would be at huge risk if fossil energy has been exhausted. Hydrogen energy is a secondary energy that comes from a variety of sources, is carbon-free and clean, adaptable and efficient, and has a wide range of potential applications among the energy structures that are now known. It is a perfect medium for establishing connections between traditional fossil fuel and renewable energy sources, allowing for the efficient and clean use of the former while fostering the large-scale growth of the latter. In order to address climate change, provide energy security, and accomplish sustainable development, it makes strategic sense to accelerate the growth of the hydrogen energy sector. In this paper, the advantages of hydrogen energy for the economy and society as well as the many processes used to produce hydrogen are discussed. Crucially, a range of techniques for producing hydrogen from natural gas are thoroughly examined because this is one of the primary sources of hydrogen.

References

Meier, A.; Steinfeld, A., Solar Thermochemical Production of Fuels. Advances in Science and Technology 2010, 74, 303-12.

Lilliestam, J.; Labordena, M.; Patt, A.; Pfenninger, S., Empirically observed learning rates for concentrating solar power and their responses to regime change. Nature Energy 2017, 2 (7).

Rahman, M. Z.; Kibria, M. G.; Mullins, C. B., Metal-free photocatalysts for hydrogen evolution. Chem Soc Rev 2020, 49 (6), 1887-1931.

Baykara, S. Z., Hydrogen: A brief overview on its sources, production and environmental impact. International Journal of Hydrogen Energy 2018, 43 (23), 10605-10614.

DemirbaŞ, A., Hydrogen Production via Pyrolytic Degradation of Agricultural Residues. Energy Sources 2006, 27 (8), 769-775.

Pilavachi, P. A.; Chatzipanagi, A. I.; Spyropoulou, A. I., Evaluation of hydrogen production methods using the Analytic Hierarchy Process. International Journal of Hydrogen Energy 2009, 34 (13), 5294-5303.

Kovač, A.; Paranos, M.; Marciuš, D., Hydrogen in energy transition: A review. International Journal of Hydrogen Energy 2021, 46 (16), 10016-10035.

Iordache, I.; Bouzek, K.; Paidar, M.; Stehlík, K.; Töpler, J.; Stygar, M.; Dąbrowa, J.; Brylewski, T.; Stefanescu, I.; Iordache, M.; Schitea, D.; Grigoriev, S. A.; Fateev, V. N.; Zgonnik, V., The hydrogen context and vulnerabilities in the central and Eastern European countries. International Journal of Hydrogen Energy 2019, 44 (35), 19036-19054.

Chang, X.; Ma, T.; Wu, R., Impact of urban development on residents’ public transportation travel energy consumption in China: An analysis of hydrogen fuel cell vehicles alternatives. International Journal of Hydrogen Energy 2019, 44 (30), 16015-16027.

Liu, X.; Reddi, K.; Elgowainy, A.; Lohse-Busch, H.; Wang, M.; Rustagi, N., Comparison of well-to-wheels energy use and emissions of a hydrogen fuel cell electric vehicle relative to a conventional gasoline-powered internal combustion engine vehicle. International Journal of Hydrogen Energy 2020, 45 (1), 972-983.

Granovskii, M.; Dincer, I.; Rosen, M., Greenhouse gas emissions reduction by use of wind and solar energies for hydrogen and electricity production: Economic factors. International Journal of Hydrogen Energy 2007, 32 (8), 927-931.

Li, Y.; Chen, D. W.; Liu, M.; Wang, R. Z., Life cycle cost and sensitivity analysis of a hydrogen system using low-price electricity in China. International Journal of Hydrogen Energy 2017, 42 (4), 1899-1911.

Gurz, M.; Baltacioglu, E.; Hames, Y.; Kaya, K., The meeting of hydrogen and automotive: A review. International Journal of Hydrogen Energy 2017, 42 (36), 23334-23346.

Cantuarias-Villessuzanne, C.; Weinberger, B.; Roses, L.; Vignes, A.; Brignon, J.-M., Social cost-benefit analysis of hydrogen mobility in Europe. International Journal of Hydrogen Energy 2016, 41 (42), 19304-19311.

Mouli-Castillo, J.; Heinemann, N.; Edlmann, K., Mapping geological hydrogen storage capacity and regional heating demands: An applied UK case study. Applied Energy 2021, 283.

Glenk, G.; Reichelstein, S., Economics of converting renewable power to hydrogen. Nature Energy 2019, 4 (3), 216-222.

Ishaq, H.; Dincer, I.; Crawford, C., A review on hydrogen production and utilization: Challenges and opportunities. International Journal of Hydrogen Energy 2022, 47 (62), 26238-26264.

Megía, P. J.; Vizcaíno, A. J.; Calles, J. A.; Carrero, A., Hydrogen Production Technologies: From Fossil Fuels toward Renewable Sources. A Mini Review. Energy & Fuels 2021, 35 (20), 16403-16415.

Tezer, Ö.; Karabağ, N.; Öngen, A.; Çolpan, C. Ö.; Ayol, A., Biomass gasification for sustainable energy production: A review. International Journal of Hydrogen Energy 2022, 47 (34), 15419-15433.

Dincer, I.; Acar, C., Review and evaluation of hydrogen production methods for better sustainability. International Journal of Hydrogen Energy 2015, 40 (34), 11094-11111.

Nikolaidis, P.; Poullikkas, A., A comparative overview of hydrogen production processes. Renewable and Sustainable Energy Reviews 2017, 67, 597-611.

Vandyshev, A. B.; Kulikov, V. A., Energy and Resource Efficiency in Industrial Systems for Production and Use of High-Purity Hydrogen. Chemical and Petroleum Engineering 2017, 53 (3-4), 166-170.

Khojasteh Salkuyeh, Y.; Saville, B. A.; MacLean, H. L., Techno-economic analysis and life cycle assessment of hydrogen production from natural gas using current and emerging technologies. International Journal of Hydrogen Energy 2017, 42 (30), 18894-18909.

Chai, H.; Geng, F.; Wu, X.; Yang, Y.; Luo, G.; Zhang, T., Numerical investigation of gas–liquid two-phase flow in a quench chamber of an entrained flow gasifier. International Journal of Hydrogen Energy 2017, 42 (9), 5873-5885.

Herdem, M. S.; Farhad, S.; Dincer, I.; Hamdullahpur, F., Thermodynamic modeling and assessment of a combined coal gasification and alkaline water electrolysis system for hydrogen production. International Journal of Hydrogen Energy 2014, 39 (7), 3061-3071.

Chai, S.; Zhang, G.; Li, G.; Zhang, Y., Industrial hydrogen production technology and development status in China: a review. Clean Technologies and Environmental Policy 2021, 23 (7), 1931-1946.

Lee, D.-Y.; Elgowainy, A., By-product hydrogen from steam cracking of natural gas liquids (NGLs): Potential for large-scale hydrogen fuel production, life-cycle air emissions reduction, and economic benefit. International Journal of Hydrogen Energy 2018, 43 (43), 20143-20160.

Lee, D.-Y.; Elgowainy, A.; Dai, Q., Life cycle greenhouse gas emissions of hydrogen fuel production from chlor-alkali processes in the United States. Applied Energy 2018, 217, 467-479.

Kang, S.-H.; Bae, J.-W.; Kim, H.-T.; Jun, K.-W.; Jeong, S.-Y.; Chary, K. V. R., Effective removal of odorants in gaseous fuel for the hydrogen station using hydrodesulfurization and adsorption. Energy & Fuels 2007, 21 (6), 3537-3540.

Yang, F.; Zhang, J.; Shi, Z.; Chen, J.; Wang, G.; He, J.; Zhao, J.; Zhuo, R.; Wang, R., Advanced design and development of catalysts in propane dehydrogenation. Nanoscale 2022, 14 (28), 9963-9988.

Herm, Z. R.; Swisher, J. A.; Smit, B.; Krishna, R.; Long, J. R., Metal-organic frameworks as adsorbents for hydrogen purification and precombustion carbon dioxide capture. J Am Chem Soc 2011, 133 (15), 5664-7.

Cavani, F.; Ballarini, N.; Cericola, A., Oxidative dehydrogenation of ethane and propane: How far from commercial implementation? Catalysis Today 2007, 127 (1-4), 113-131.

Deng, X.; Wang, H.; Huang, H.; Ouyang, M., Hydrogen flow chart in China. International Journal of Hydrogen Energy 2010, 35 (13), 6475-6481.

Zhang, L.-N.; Li, R.; Zang, H.-Y.; Tan, H.-Q.; Kang, Z.-H.; Wang, Y.-H.; Li, Y.-G., Advanced hydrogen evolution electrocatalysts promising sustainable hydrogen and chlor-alkali co-production. Energy & Environmental Science 2021, 14 (12), 6191-6210.

Garcia-Herrero, I.; Margallo, M.; Onandía, R.; Aldaco, R.; Irabien, A., Life Cycle Assessment model for the chlor-alkali process: A comprehensive review of resources and available technologies. Sustainable Production and Consumption 2017, 12, 44-58.

Murthy, B. N.; Sawarkar, A. N.; Deshmukh, N. A.; Mathew, T.; Joshi, J. B., Petroleum coke gasification: A review. The Canadian Journal of Chemical Engineering 2014, 92 (3), 441-468.

Yousefi Rizi, H.; Shin, D., Green Hydrogen Production Technologies from Ammonia Cracking. Energies 2022, 15 (21).

Mei, D.; Qiu, X.; Liu, H.; Wu, Q.; Yu, S.; Xu, L.; Zuo, T.; Wang, Y., Progress on methanol reforming technologies for highly efficient hydrogen production and applications. International Journal of Hydrogen Energy 2022, 47 (84), 35757-35777.

Velazquez Abad, A.; Dodds, P. E., Green hydrogen characterisation initiatives: Definitions, standards, guarantees of origin, and challenges. Energy Policy 2020, 138.

Abbasi, T.; Abbasi, S. A., ‘Renewable’ hydrogen: Prospects and challenges. Renewable and Sustainable Energy Reviews 2011, 15 (6), 3034-3040.

Chi, J.; Yu, H., Water electrolysis based on renewable energy for hydrogen production. Chinese Journal of Catalysis 2018, 39 (3), 390-394.

Schmidt, O.; Gambhir, A.; Staffell, I.; Hawkes, A.; Nelson, J.; Few, S., Future cost and performance of water electrolysis: An expert elicitation study. International Journal of Hydrogen Energy 2017, 42 (52), 30470-30492.

Yu, Z. Y.; Duan, Y.; Feng, X. Y.; Yu, X.; Gao, M. R.; Yu, S. H., Clean and Affordable Hydrogen Fuel from Alkaline Water Splitting: Past, Recent Progress, and Future Prospects. Adv Mater 2021, 33 (31), e2007100.

Carmo, M.; Fritz, D. L.; Mergel, J.; Stolten, D., A comprehensive review on PEM water electrolysis. International Journal of Hydrogen Energy 2013, 38 (12), 4901-4934.

Grigoriev, S.; Porembsky, V.; Fateev, V., Pure hydrogen production by PEM electrolysis for hydrogen energy. International Journal of Hydrogen Energy 2006, 31 (2), 171-175.

Vincent, I.; Bessarabov, D., Low cost hydrogen production by anion exchange membrane electrolysis: A review. Renewable and Sustainable Energy Reviews 2018, 81, 1690-1704.

Brisse, A.; Schefold, J.; Zahid, M., High temperature water electrolysis in solid oxide cells. International Journal of Hydrogen Energy 2008, 33 (20), 5375-5382.

Santos, D. M. F.; Sequeira, C. A. C.; Figueiredo, J. L., HYDROGEN PRODUCTION BY ALKALINE WATER ELECTROLYSIS. Quimica Nova 2013, 36 (8), 1176-1193.

Zeng, K.; Zhang, D., Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in Energy and Combustion Science 2010, 36 (3), 307-326.

Laguna-Bercero, M. A., Recent advances in high temperature electrolysis using solid oxide fuel cells: A review. Journal of Power Sources 2012, 203, 4-16.

Shiva Kumar, S.; Himabindu, V., Hydrogen production by PEM water electrolysis – A review. Materials Science for Energy Technologies 2019, 2 (3), 442-454.

Ohmori, T.; Tachikawa, K.; Tsuji, K.; Anzai, K., Nickel oxide water electrolysis diaphragm fabricated by a novel method. International Journal of Hydrogen Energy 2007, 32 (18), 5094-5097.

Li, C.; Baek, J.-B., The promise of hydrogen production from alkaline anion exchange membrane electrolyzers. Nano Energy 2021, 87.

Dehghanimadvar, M.; Shirmohammadi, R.; Sadeghzadeh, M.; Aslani, A.; Ghasempour, R., Hydrogen production technologies: Attractiveness and future perspective. International Journal of Energy Research 2020, 44 (11), 8233-8254.

Burton, N. A.; Padilla, R. V.; Rose, A.; Habibullah, H., Increasing the efficiency of hydrogen production from solar powered water electrolysis. Renewable and Sustainable Energy Reviews 2021, 135.

Kojima, H.; Nagasawa, K.; Todoroki, N.; Ito, Y.; Matsui, T.; Nakajima, R., Influence of renewable energy power fluctuations on water electrolysis for green hydrogen production. International Journal of Hydrogen Energy 2023, 48 (12), 4572-4593.

Wu, Y.; Liu, F.; Wu, J.; He, J.; Xu, M.; Zhou, J., Barrier identification and analysis framework to the development of offshore wind-to-hydrogen projects. Energy 2022, 239.

Bhattacharyya, R.; Misra, A.; Sandeep, K. C., Photovoltaic solar energy conversion for hydrogen production by alkaline water electrolysis: Conceptual design and analysis. Energy Conversion and Management 2017, 133, 1-13.

Ahshan, R.; Onen, A.; Al-Badi, A. H., Assessment of wind-to-hydrogen (Wind-H2) generation prospects in the Sultanate of Oman. Renewable Energy 2022, 200, 271-282.

Liu, W.; Liu, C.; Gogoi, P.; Deng, Y., Overview of Biomass Conversion to Electricity and Hydrogen and Recent Developments in Low-Temperature Electrochemical Approaches. Engineering 2020, 6 (12), 1351-1363.

Das, D.; Veziroglu, T. N., Hydrogen production by biological processes: a survey of literature. International Journal of Hydrogen Energy 2001, 26 (1), 13-28.

Kapdan, I. K.; Kargi, F., Bio-hydrogen production from waste materials. Enzyme and Microbial Technology 2006, 38 (5), 569-582.

Florin, L.; Tsokoglou, A.; Happe, T., A novel type of iron hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetic electron transport chain. J Biol Chem 2001, 276 (9), 6125-32.

Pinto, F. A. L.; Troshina, O.; Lindblad, P., A brief look at three decades of research on cyanobacterial hydrogen evolution. International Journal of Hydrogen Energy 2002, 27 (11-12), 1209-1215.

Hallenbeck, P. C.; Liu, Y., Recent advances in hydrogen production by photosynthetic bacteria. International Journal of Hydrogen Energy 2016, 41 (7), 4446-4454.

Yokoi, H.; Tokushige, T.; Hirose, J.; Hayashi, S.; Takasaki, Y., H-2 production from starch by a mixed culture of Clostridium butyricum and Enterobacter aerogenes. Biotechnology Letters 1998, 20 (2), 143-147.

Muradov, N.; Vezirolu, T., From hydrocarbon to hydrogen?carbon to hydrogen economy. International Journal of Hydrogen Energy 2005, 30 (3), 225-237.

Iulianelli, A.; Liguori, S.; Wilcox, J.; Basile, A., Advances on methane steam reforming to produce hydrogen through membrane reactors technology: A review. Catalysis Reviews 2016, 58 (1), 1-35.

Monteiro, E.; Brito, P. S. D., Hydrogen supply chain: Current status and prospects. Energy Storage 2023.

Boretti, A.; Banik, B. K., Advances in Hydrogen Production from Natural Gas Reforming. Advanced Energy and Sustainability Research 2021, 2 (11).

Cui, W.; Younus, T.; Anwer, A.; Asim, Z.; Surahio, M. S.; Rusu, E., Production of Hydrogen by Steam Methane Reformation Process. E3S Web of Conferences 2018, 51.

Makaryan, I. A.; Salgansky, E. A.; Arutyunov, V. S.; Sedov, I. V., Non-Catalytic Partial Oxidation of Hydrocarbon Gases to Syngas and Hydrogen: A Systematic Review. Energies 2023, 16 (6).

Yang, Y.; Tong, L.; Yin, S.; Liu, Y.; Wang, L.; Qiu, Y.; Ding, Y., Status and challenges of applications and industry chain technologies of hydrogen in the context of carbon neutrality. Journal of Cleaner Production 2022, 376.

Matsumura, Y.; Nakamori, T., Steam reforming of methane over nickel catalysts at low reaction temperature. Applied Catalysis A: General 2004, 258 (1), 107-114.

Angeli, S. D.; Monteleone, G.; Giaconia, A.; Lemonidou, A. A., State-of-the-art catalysts for CH4 steam reforming at low temperature. International Journal of Hydrogen Energy 2014, 39 (5), 1979-1997.

Ogden, J. M.; Steinbugler, M. M.; Kreutz, T. G., A comparison of hydrogen, methanal and gasoline as fuels for fuel cell vehicles: implications for vehicle design and infrastructure development. Journal of Power Sources 1999, 79 (2), 143-168.

Holladay, J. D.; Hu, J.; King, D. L.; Wang, Y., An overview of hydrogen production technologies. Catalysis Today 2009, 139 (4), 244-260.

Mahecha-Botero, A.; Boyd, T.; Gulamhusein, A.; Grace, J. R.; Lim, C. J.; Shirasaki, Y.; Kurokawa, H.; Yasuda, I., Catalytic reforming of natural gas for hydrogen production in a pilot fluidized-bed membrane reactor: Mapping of operating and feed conditions. International Journal of Hydrogen Energy 2011, 36 (17), 10727-10736.

Kalamaras, C. M.; Efstathiou, A. M., Hydrogen Production Technologies: Current State and Future Developments. Conference Papers in Energy 2013, 2013, 1-9.

Bej, B.; Pradhan, N. C.; Neogi, S., Production of hydrogen by steam reforming of methane over alumina supported nano-NiO/SiO2 catalyst. Catalysis Today 2013, 207, 28-35.

Daneshmand-Jahromi, S.; Rahimpour, M.; Meshksar, M.; Hafizi, A., Hydrogen Production from Cyclic Chemical Looping Steam Methane Reforming over Yttrium Promoted Ni/SBA-16 Oxygen Carrier. Catalysts 2017, 7 (10).

García-Lario, A. L.; Grasa, G. S.; Murillo, R., Performance of a combined CaO-based sorbent and catalyst on H2 production, via sorption enhanced methane steam reforming. Chemical Engineering Journal 2015, 264, 697-705.

Arutyunov, V.; Savchenko, V.; Sedov, I.; Nikitin, A., Non-Catalytic Gas Phase Oxidation of Hydrocarbons. Eurasian Chemico-Technological Journal 2022, 24 (1).

Cihlar, J.; Vrba, R.; Castkova, K.; Cihlar, J., Effect of transition metal on stability and activity of La-Ca-M-(Al)-O (M = Co, Cr, Fe and Mn) perovskite oxides during partial oxidation of methane. International Journal of Hydrogen Energy 2017, 42 (31), 19920-19934.

Messaoudi, H.; Thomas, S.; Djaidja, A.; Slyemi, S.; Chebout, R.; Barama, S.; Barama, A.; Benaliouche, F., Hydrogen production over partial oxidation of methane using Ni Mg Al spinel catalysts: A kinetic approach. Comptes Rendus Chimie 2017, 20 (7), 738-746.

Hohn, K. L.; Schmidt, L. D., Partial oxidation of methane to syngas at high space velocities over Rh-coated spheres. Applied Catalysis a-General 2001, 211 (1), 53-68.

Pino, L.; Recupero, V.; Beninati, S.; Shukla, A. K.; Hegde, M. S.; Bera, P., Catalytic partial-oxidation of methane on a ceria-supported platinum catalyst for application in fuel cell electric vehicles. Applied Catalysis a-General 2002, 225 (1-2), 63-75.

Ranjekar, A. M.; Yadav, G. D., Dry reforming of methane for syngas production: A review and assessment of catalyst development and efficacy. Journal of the Indian Chemical Society 2021, 98 (1).

Bach, V. R.; de Camargo, A. C.; de Souza, T. L.; Cardozo-Filho, L.; Alves, H. J., Dry reforming of methane over Ni/MgO–Al2O3 catalysts: Thermodynamic equilibrium analysis and experimental application. International Journal of Hydrogen Energy 2020, 45 (8), 5252-5263.

Jang, W.-J.; Jeong, D.-W.; Shim, J.-O.; Kim, H.-M.; Roh, H.-S.; Son, I. H.; Lee, S. J., Combined steam and carbon dioxide reforming of methane and side reactions: Thermodynamic equilibrium analysis and experimental application. Applied Energy 2016, 173, 80-91.

Osojnik Črnivec, I. G.; Djinović, P.; Erjavec, B.; Pintar, A., Effect of synthesis parameters on morphology and activity of bimetallic catalysts in CO2–CH4 reforming. Chemical Engineering Journal 2012, 207-208, 299-307.

Al-Fatesh, A.; Singh, S. K.; Kanade, G. S.; Atia, H.; Fakeeha, A. H.; Ibrahim, A. A.; El-Toni, A. M.; Labhasetwar, N. K., Rh promoted and ZrO2/Al2O3 supported Ni/Co based catalysts: High activity for CO2 reforming, steam–CO2 reforming and oxy–CO2 reforming of CH4. International Journal of Hydrogen Energy 2018, 43 (27), 12069-12080.

Oni, A. O.; Anaya, K.; Giwa, T.; Di Lullo, G.; Kumar, A., Comparative assessment of blue hydrogen from steam methane reforming, autothermal reforming, and natural gas decomposition technologies for natural gas-producing regions. Energy Conversion and Management 2022, 254.

Lee, S.; Applegate, D.; Ahmed, S.; Calderone, S.; Harvey, T., Hydrogen from natural gas: part I—autothermal reforming in an integrated fuel processor. International Journal of Hydrogen Energy 2005, 30 (8), 829-842.

Yan, Y.; Zhang, J.; Zhang, L., Properties of thermodynamic equilibrium-based methane autothermal reforming to generate hydrogen. International Journal of Hydrogen Energy 2013, 38 (35), 15744-15750.

Gao, J.; Guo, J.; Liang, D.; Hou, Z.; Fei, J.; Zheng, X., Production of syngas via autothermal reforming of methane in a fluidized-bed reactor over the combined CeO2–ZrO2/SiO2 supported Ni catalysts. International Journal of Hydrogen Energy 2008, 33 (20), 5493-5500.

Ruiz, J. A. C.; Passos, F. B.; Bueno, J. M. C.; Souza-Aguiar, E. F.; Mattos, L. V.; Noronha, F. B., Syngas production by autothermal reforming of methane on supported platinum catalysts. Applied Catalysis A: General 2008, 334 (1-2), 259-267.

Souza, M. M. V. M.; Schmal, M., Autothermal reforming of methane over Pt/ZrO2/Al2O3 catalysts. Applied Catalysis A: General 2005, 281 (1-2), 19-24.

Yousefi, M.; Donne, S., Experimental study for thermal methane cracking reaction to generate very pure hydrogen in small or medium scales by using regenerative reactor. Frontiers in Energy Research 2022, 10.

Naikoo, G. A.; Arshad, F.; Hassan, I. U.; Tabook, M. A.; Pedram, M. Z.; Mustaqeem, M.; Tabassum, H.; Ahmed, W.; Rezakazemi, M., Thermocatalytic Hydrogen Production Through Decomposition of Methane-A Review. Front Chem 2021, 9, 736801.

Zhang, J.; Li, X.; Chen, H.; Qi, M.; Zhang, G.; Hu, H.; Ma, X., Hydrogen production by catalytic methane decomposition: Carbon materials as catalysts or catalyst supports. International Journal of Hydrogen Energy 2017, 42 (31), 19755-19775.

Tong, S.; Miao, B.; Zhang, L.; Chan, S. H., Decarbonizing Natural Gas: A Review of Catalytic Decomposition and Carbon Formation Mechanisms. Energies 2022, 15 (7).

Ning, G. Q.; Wei, F.; Wen, Q.; Luo, G. H.; Wang, Y.; Jin, Y., Improvement of Fe/MgO catalysts by calcination for the growth of single-and double-walled carbon nanotubes. Journal of Physical Chemistry B 2006, 110 (3), 1201-1205.

Cunha, A. F.; Órfão, J. J. M.; Figueiredo, J. L., Methane decomposition on Fe–Cu Raney-type catalysts. Fuel Processing Technology 2009, 90 (10), 1234-1240.

Reshetenko, T. V.; Avdeeva, L. B.; Ismagilov, Z. R.; Pushkarev, V. V.; Cherepanova, S. V.; Chuvilin, A. L.; Likholobov, V. A., Catalytic filamentous carbon. Carbon 2003, 41 (8), 1605-1615.

Li, Y.; Li, D.; Wang, G., Methane decomposition to COx-free hydrogen and nano-carbon material on group 8–10 base metal catalysts: A review. Catalysis Today 2011, 162 (1), 1-48.

Alves, L.; Pereira, V.; Lagarteira, T.; Mendes, A., Catalytic methane decomposition to boost the energy transition: Scientific and technological advancements. Renewable and Sustainable Energy Reviews 2021, 137.

Chen, A.; Guo, H.; Song, Y.; Chen, P.; Lou, H., Recyclable CeO2–ZrO2 and CeO2–TiO2 mixed oxides based Pt catalyst for aqueous-phase reforming of the low-boiling fraction of bio-oil. International Journal of Hydrogen Energy 2017, 42 (15), 9577-9588.

Carrillo, A. J.; Sastre, D.; Zazo, L.; Serrano, D. P.; Coronado, J. M.; Pizarro, P., Hydrogen production by methane decomposition over MnOx/YSZ catalysts. International Journal of Hydrogen Energy 2016, 41 (42), 19382-19389.

Abanades, S.; Kimura, H.; Otsuka, H., Hydrogen production from thermo-catalytic decomposition of methane using carbon black catalysts in an indirectly-irradiated tubular packed-bed solar reactor. International Journal of Hydrogen Energy 2014, 39 (33), 18770-18783.

Lee, S. C.; Seo, H. J.; Han, G. Y., Hydrogen production by catalytic decomposition of methane over carbon black catalyst at high temperatures. Korean Journal of Chemical Engineering 2013, 30 (9), 1716-1721.

Allaedini, G.; Aminayi, P.; Tasirin, S. M., Methane decomposition for carbon nanotube production: Optimization of the reaction parameters using response surface methodology. Chemical Engineering Research and Design 2016, 112, 163-174.

Meloni, E.; Martino, M.; Ricca, A.; Palma, V., Ultracompact methane steam reforming reactor based on microwaves susceptible structured catalysts for distributed hydrogen production. International Journal of Hydrogen Energy 2021, 46 (26), 13729-13747.

Wang, Q.; Wang, J.; Zhu, T.; Zhu, X.; Sun, B., Characteristics of methane wet reforming driven by microwave plasma in liquid phase for hydrogen production. International Journal of Hydrogen Energy 2021, 46 (69), 34105-34115.

Saleem, F.; Harvey, A.; Zhang, K., Low temperature conversion of toluene to methane using dielectric barrier discharge reactor. Fuel 2019, 248, 258-261.

Khoja, A. H.; Tahir, M.; Saidina Amin, N. A., Process optimization of DBD plasma dry reforming of methane over Ni/La2O3MgAl2O4 using multiple response surface methodology. International Journal of Hydrogen Energy 2019, 44 (23), 11774-11787.

Song, L.; Kong, Y.; Li, X., Hydrogen production from partial oxidation of methane over dielectric barrier discharge plasma and NiO/γ-Al2O3 catalyst. International Journal of Hydrogen Energy 2017, 42 (31), 19869-19876.

Rueangjitt, N.; Sreethawong, T.; Chavadej, S.; Sekiguchi, H., Plasma-catalytic reforming of methane in AC microsized gliding arc discharge: Effects of input power, reactor thickness, and catalyst existence. Chemical Engineering Journal 2009, 155 (3), 874-880.

Choi, D. H.; Chun, S. M.; Ma, S. H.; Hong, Y. C., Production of hydrogen-rich syngas from methane reforming by steam microwave plasma. Journal of Industrial and Engineering Chemistry 2016, 34, 286-291.

Kheirollahivash, M.; Rashidi, F.; Moshrefi, M. M., Hydrogen Production from Methane Decomposition Using a Mobile and Elongating Arc Plasma Reactor. Plasma Chemistry and Plasma Processing 2019, 39 (2), 445-459.

Chun, S. M.; Hong, Y. C.; Choi, D. H., Reforming of methane to syngas in a microwave plasma torch at atmospheric pressure. Journal of CO2 Utilization 2017, 19, 221-229.

Czylkowski, D.; Hrycak, B.; Jasiński, M.; Dors, M.; Mizeraczyk, J., Microwave plasma-based method of hydrogen production via combined steam reforming of methane. Energy 2016, 113, 653-661.

Rahim, I.; Nomura, S.; Mukasa, S.; Toyota, H., Decomposition of methane hydrate for hydrogen production using microwave and radio frequency in-liquid plasma methods. Applied Thermal Engineering 2015, 90, 120-126.

Chung, W.-C.; Chang, M.-B., Dry reforming of methane by combined spark discharge with a ferroelectric. Energy Conversion and Management 2016, 124, 305-314.

Moshrefi, M. M.; Rashidi, F., Hydrogen production from methane by DC spark discharge: Effect of current and voltage. Journal of Natural Gas Science and Engineering 2014, 16, 85-89.

Gao, Y.; Zhang, S.; Sun, H.; Wang, R.; Tu, X.; Shao, T., Highly efficient conversion of methane using microsecond and nanosecond pulsed spark discharges. Applied Energy 2018, 226, 534-545.

Published

2025-08-11

Issue

Section

Article

How to Cite

"Hydrogen Production from Natural Gas: Policy Implications and Technological Innovations". (2025). Lex Localis - Journal of Local Self-Government, 23(4). https://doi.org/10.52152/3121