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Abstract
A Smart Grid System is an advanced electrical grid employing digital communication to enhance electricity flow 
control, boosting efficiency, reliability, and sustainability of energy distribution. Renewable energy sources, like 
sunlight, wind, water, and biomass, offer clean and sustainable energy but suffer from intermittency due to weather 
variations and can lead to land use conflicts as hefty installations may compete with agriculture or natural 
environments. The Capuchin Search Algorithm (CapSA) and Global-Context Residual Recurrent Neural Networks 
(GR-RNN) work together to create the CapSA-GR-RNN Approach, a hybrid method for smart grid systems with 
high penetration of renewable energy sources (RES). The main goal of the proposed technique is to reduce 
operational cost, pollution emission, and maximize availability by using RES. CapSA is used to optimize the 
performance of smart microgrids, and GR-RNN is used to predict the behavior of RES, such as the Probability 
Density Function (PDF) and Cumulative Density Function (CDF).This method has been implemented on the 
MATLAB platform. The proposed method is compared with existing methods such as Particle Swarm Optimization 
(PSO), Grey Wolf Optimizer and Sparrow Search Algorithm,.  In the proposed approach, the cost is $0.93, whereas 
the existing methods incur costs of $1.08, $0.96, and $0.98. This indicates that the proposed method has a potential 
cost saving capability linked to the existing methods.

Keywords: Direct Current, Energy Storage System, Fuel Cell, Load, Photo Voltaic, Smart Grid, Wind Turbine. 

Introduction
a. Background
Recent research on energy optimization suggests that it's possible to reduce energy consumption 
by 25-35% without altering existing system infrastructure through the optimization of power 
usage and generation [1]. One way to lower pollution emissions, satisfy customer demands 
affordably, and reduce power loss is to employ RES like solar and wind [2]. Energy optimisation 
has become a significant problem with the emergence of the notion of a highly integrated 
renewable energy source-based Smart Grid (SG) [3]. Power companies may combine various 
renewable energy sources and make better selections when it comes to wind and solar energy 
systems to increase the power system overall reliability of the become more integrated into 
current power systems and show greater flexibility in smart grid operations [4-5]. Moreover, 
with the daily rise in electrical energy demand, there's a pressing need for reliable energy sources 
to meet future energy requirements, with solar-wind hybrid energy systems emerging as a 
promising solution [6-7]. This article's main goal is to increase power systems' reliability by 
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incorporating solar and wind energy sources into existing networks. utilising cutting-edge, clever 
tactics [8]. Due to the rapid rise in renewable energy, the integration of solar and wind power 
increases the complexity of the system, leading to increased failure rates. These failures are often 
attributed to adverse operating conditions and fluctuating loads [9-10]. In solar photovoltaic 
systems, the primary components include PV modules and their accessories, while in wind 
energy systems; the gearbox plays a pivotal role. Gearboxes are essential for transmitting torque 
and regulating speed in wind turbines [10-11].
b. Literature review
The literature has already reported many studies focusing on smart grid systems with substantial 
penetration of RES and features. Some of them reviewed are as follows,
M. Fotopoulou et al. [12] have suggested a technique to evaluate how well smart grids perform 
in emergency scenarios. Smart grids, with all its fancy optimisation algorithms, don't always 
function without emergencies requiring changes to the EMS via a DSS. The aim of this study is 
to assess how crises affect smart grids by employing a unique optimisation method. The 
approach incorporates Artificial Neural Networks (ANN) for intermittent RES production 
forecasting and an optimizer to improve the grid's autonomy by prioritising RES. Each 
emergency scenario was evaluated based on its effect on grid autonomy, sustainability, 
curtailments, and CO2 emissions. I. Akhtar et al. [13] have suggested a reliability analysis of 
power systems that takes into account the advanced intelligent techniques for RES integration. 
As the power industry transitions towards more secure and advanced smart grids, incorporating 
RES like solar and wind energy systems becomes crucial for achieving reliability and security 
goals. This article's objective is to improve the dependability of the power system by skillfully 
integrating solar and wind energy into the system. It covers several models and frameworks that 
may be used to evaluate the reliability effect of RES integration. K. Liang et al. [14] have 
suggested rehabilitation of the electricity system in the context of widespread use of renewable 
energy. the difficulties in restoring power systems that come with integrating a lot of renewable 
energy. It outlines stages of transmission and distribution system restoration processes, 
highlighting advances in handling renewable power uncertainty during restoration. The paper 
discusses various techniques, including microgrids, multi-agent systems, and flexible resource 
utilization, to ensure efficient restoration with large renewable energy penetration.
S. Saha et al. [15] have suggested the impact of growing grid frequency behaviour on renewable 
energy source uptake. The grid's inertia reduces as inverter-based RES take the place of 
conventional synchronous generators, which presents problems for the frequency stability of the 
grid. Integrating inverter-based renewable energy sources into the grid frequency responsiveness 
is assessed in this study through the use of eigenvalue analysis of low-inertia power networks. S. 
Wang et al. [16] have suggested the requirement for energy storage for frequency control and 
peak shaving in power networks with high renewable energy penetration. The recommended 
method for estimating the energy storage capacity needed in such systems to optimise system 
operating costs while accounting for net load uncertainties and peak shaving and frequency 
control. L. Wang et al., in [17], suggested a unique energy management method with blockchain 
technology for dispersed energy networks with large diffusion of renewable energy. The paper 
streamlines the model inversion procedure for blockchain encryption methods and provides a 
consensus mechanism based on proof of energy contribution. This dynamic energy management 
mode is designed to solve the problems of distributed and independent energy management in 
systems with a high penetration of green energy. In order to expand the use of dispersed 
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renewable energy in smart grids, J. Hashimoto et al. [18] proposed an advanced technique for 
grid integration. With the increasing use of generators powered by renewable energy, there was a 
need for robust testing platforms to assess their impact on grid operations. The paper proposes an 
advanced testing platform to ensure compliance with grid integration requirements and 
streamline testing processes for connected devices in smart grids.
 c. Research Gap and Motivation 
The most difficult issues are those related to developing a smart grid system with a tall RES 
penetration, according to a general overview of recent studies. Drawbacks include the 
complexity of the hybrid method and potential challenges in real-world implementation due to 
the intricate combination of optimization techniques. An ideal method introduces an optimal 
power flow for HRES that makes use of the Sparrow Search Algorithm (SSA) and Improved 
Bear Smell Search (IBSS). Therefore, in order to maintain an excellent inverter output, adequate 
fluctuation balancing and the acquisition of an advanced controller are required. Fuzzy logic 
control and model predictive control systems can be used in an advanced control system to 
overcome this issue. Another significant challenge is ensuring grid resilience and stability when 
there is a high RES penetration rate. The intermittent nature of renewable energy generation can 
result in sudden fluctuations in power supply, potentially foremost to voltage then frequency 
instability. Optimal approaches for HRES power quality enhancement are needed to overcome 
these obstacles. However, since of the erratic and recurrent nature of RES energy optimisation 
and consumer behaviour, is difficult. Previous research has attempted to address this challenge 
using various optimization techniques, such as hybrid optimization schemes (GSA-PSO), 
optimization-centric strategies (DP, PMP, ECMS, and PSO), ANN, and state-of-the-art energy 
dispatch algorithms. Optimal strategies for great penetration of HRES are needed to overcome 
these obstacles. These drawbacks are motivated to do this work.
d. Challenges
One of the primary challenges in optimizing energy from RES similar to sun and wind, their 
behaviour is unpredictable, leading to discrepancies between real-time generation and forecasted 
values. This uncertainty poses difficulties for smart grid (SG) operators tasked with balancing 
energy generation and consumption. To mitigate this, operators maintain reserves to address 
fluctuations in energy generation and uphold security levels. However, existing models, while 
suitable for such scenarios, face performance degradation when scaled. Additionally, approaches 
such as the scenario tree method are employed to tackle energy management issues. However, 
because of the erratic and irregular nature of RES and customer behaviour, the optimisation 
process is still difficult.
e. Contribution
The following a summary of this manuscript's primary contributions:
 • This manuscript presents a novel hybrid method for enhancing the efficiency of smart grid 
systems with a high penetration of RES. 
• The proposed hybrid technique integrates the CapSA with GR-RNN. • The main objective of 
this proposed method is to minimize operational costs, decrease pollution emissions, and 
maximize resource availability through RES utilization.
 • In this hybrid technique, the GR-RNN models PDF and CDF to forecast the behaviour of RES, 
namely solar and wind, while the CapSA method is used to maximise the performance of smart 
microgrids. 

2290



LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT 
ISSN:1581-5374 E-ISSN:1855-363X  
VOL. 23, NO. 11(2025)

• The performance of the proposed strategy is assessed by implementing it in MATLAB and 
comparing it to other approaches.

f. Organization 
The remaining part of the research article is as: Sector 2 depicts the Summary of the hybrid 
energy system with PV, wind turbine, and battery. Proposed method for smart grid system with 
renewable energy sources using hybrid CapSA-GR-RNN approach is represented in sector 3. 
Sector 4 represents the results and argument while Sector 5 gives the conclusion of the 
manuscript.

2. Conformation of the Hybrid Energy System with Battery, Wind Turbine and PV
Configuration of the hybrid energy system with battery, wind turbine and PV is shown in Fig 1. 
The smooth incorporation of RES like PV and wind power into a smart grid system involves a 
dynamic interplay among these decentralized energy generation systems, the traditional utility 
grid, and potential additional distributed energy resources such as fuel cells. PV systems harness 
sunlight to generate electricity through photovoltaic panels, while wind turbines fed power to the 
grid by utilizing the kinetic energy from the wind. Both PV and wind systems generally feed the 
generated electricity into the local distribution grid. Smart grid technologies enable bidirectional 
communication between these distributed energy resources and the utility grid, control of energy 
flows and allowing for real-time monitoring. This capability empowers grid operators to 
effectively manage the intermittent nature of renewable energy sources, thereby optimizing their 
integration while upholding reliability and stability. Concurrently, fuel cells present another 
avenue for distributed energy generation that can be seamlessly integrated into the smart grid 
ecosystem. Operating through electrochemical reactions, fuel cells often utilize hydrogen or 
natural gas as fuel to produce electricity. They complement renewable energy sources by 
offering continuous or dispatch able power generation capabilities. Smart grid integration 
enables the coordinated operation of fuel cells alongside other renewable sources, optimizing 
their utilization based on variables including grid limitations, renewable energy supply, and 
energy consumption. The CapSA-GR-RNN approach combines CapSA and GR-RNN to enhance 
smart microgrid efficiency, emphasizing RES forecasting. It also incorporates a DC/DC 
converter to optimize energy flow management within the microgrid. 
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Fig 1: Configuration of the hybrid energy system with battery, wind turbine and PV

2.1. Modeling of PV system
Solar energy is instantly transformed to electrical energy by the PV. PV cell circuit includes 
diode and current source )( phI  [19]. A p-n junction is inferred using the anti-parallel diode, and 
solar radiation is emulated by the current source. Shunt and series resistance are incorporated in 
PV cells to reduce losses, and solar irradiance causes them to produce DC when sunlight touches 
them. When Kirchhoff’s Current Law (KCL) is applied to the circuit above, the output current 
for PV is achieved as,

shDphpv IIII                                                                                                                 (1)
In this case, phI  for ID for the diode current, photocurrent, pvI  stands for the PV current, and 

shI for the shunt current. In terms of the diode current,
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Where, oI is used to represent the saturation current, TV is denoted as the voltage at room 
temperature, pvV the PV voltage, and sR is represented as the series resistance. To express the 
thermal voltage,

qTkV cT /.                                                                                                                                    (3)

 TI
G
GI screfph
ref

ph  .,                                                                                                             (4)

Where, G stands for irradiance refphI , attitudes for the photocurrent below standard test 
conditions, refG for the irradiance, and refCT , is the temperature of the cell. refCC TTT , ,where
sc  for the SC current's temperature coefficient. Shunt current is given by,
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                                                                                                                           (5)

Where shR  is castoff to denote shunt confrontation. The PV system's concluding equation for 
current is given as,
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Here, sN signifies the quantity of cells in series and q stands for the electron charge denoted 
by q . A solar cell's low DC voltage can be maximized by using a Re-lift Luo converter.
2.2. Equation Modeling of Wind turbines
The gale's velocity and the region it travels across determine how much electricity a wind turbine 
can generate [20]. A wind turbine's power may be computed as follows:
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Where,  TA is the vital height of the wind speed, coffA is represented as the cut-off speed, W
RP is 

indicated as the rated power of the wind turbine , cinA is  indicated as denoted  is the rated wind 
speed.and as the cut-in speed,
The probability density function (PDF) is a curve that illustrates the variation of wind speed 
throughout the year. The area under the curve could be depicted to represent the probability that 
the wind will fall between two given wind speeds when the changing wind speeds are 
considered. It could be specified as:
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Where, aE is the wind speed PDF, 1a and 2a are the 2 wind speed systems.. The Weibull 
probability function, which forms the basis for characterising wind speed statistics, is defined as:
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Here, k is denoted as the shape limit, c is indicated as the scale parameter, and a is represented 
as the wind speed system. The Weibull probability function is the most important PDF for wind 
speed statistics
The wind speed of the earth's surfaces varies; for instance, the wind speed over a forest and a 
calm sea varies. This difference can be computed through determining the wind speed at an 
increased height. The following is how to calculate the speed of wind at an attained height: 
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Where, A  is represented as the wind speed at a required height wtH , 0A is indicated as the wind 
speed at a reference height 0H , and  is indicated as the friction coefficient. The friction 
coefficient is determined by the topography that the wind blows over. In general, it is thought 
that an approximate value for   is 1/7. 
The computation of the total power )(TPwt  generated by wind turbines is as follows:

 TPNTP WTwtwt )(                                                                                                                  (12)
Where, wtN  is the quantity of turbines.
2.3. Fuel Cell Model
Using Hydrogen Fuel Cells (HCs), energy is produced through the electrochemical reaction of 
oxygen and hydrogen [21]. PEM fuel cells are the most widely used type of FCs in automotive 
applications, notwithstanding their variety. In such instance, the car was outfitted with an 

TMHorizon H-3000 open cathode PEMFC, this has a maximum output of 3000W and 72 cells. 
Our special technology replaced the original control system, which lets hydrogen circulate 
through a Venture ejector. For this study, the fuel cell model is simplified into a quasi-static 
model that comprises a fuel usage map and some limits. If the temperature inside the stack isn't 
large enough, the stack voltage drops, and the fuel cell can produce up to 3000 watts., cannot 
operate at its full power. Under these circumstances, a low voltage failure might manifest, 
causing the FC to stop working. The FC can run at up to 2100W maximum power. On the other 
hand, FC power is defined as gross power less the power of auxiliary components, or net power. 
However, as the FC has a minimum power authorization of 0, it is in standby mode.
The power gradient in the FC is:

      ,1

s

FCFC
FC t

nPnPnP 
                                                                                                                       

(13)
As we shall see later, this value represents the control input that the EMS calculates, where 

 nPFC is the power given by FC . Control input is thus limited in the following ways: 
  ,21000  nPFC                                                                                                                                              

(14)
  .300900  nPFC                                                                                                                                      

(15)
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Notice that Equation (15) depends on the real power values and the preceding ones. To overcome 
these limitations, using the following state equation as a guide, one method is to study the power 
in the FC as a state variables as :

   .1 nPns FCFC                                                                                                                                                
(16)
Now, the constraint in Equation (15) is contingent on a state. Generally speaking, this limitation 
places severe restrictions on the EMS, which significantly degrades the vehicle's performance. 
Lastly, the gross current can be used to determine the consumption. One way to calculate the 
instantaneous fuel usage is as follows: 

cellgrossFCH Nim
3600
03761.0

,2


                                                                                                       (17)
Where, 

2Hm is denoted as the 2H mass flow rate in g/s, grossFCi ,  is indicated as the gross current 
(i.e. stack current) in amperes, and cellN  is denoted as the number of cells of the FC stack. 
Solitary the 2H reactions have been taken into account thus far. The 2H emitted during purges is 
another, though less significant, role in the consumption. It is challenging to predict or replicate 
by modelling the quantity of 2H  emitted during purges. Counting solely the 2H  reactions in the 
stack's cells, the comparison of fuel consumption is done on the assumption that the amount of 
fuel used is independent of the EMS selected. 

2.4. Objective Function
Certain and uncertain costs make up the two primary types of operational costs. Demand 
Response Programmes (DRPS), power costs purchased from or sold to the utility, and 
Distributed generation (DGS) startup and operation costs are two instances of specific operating 
expenses [22]. On the other hand, reserve costs supplied by DGS are also included in this 
category. Wind and solar parameter uncertainty affects the probability of scenarios (Prs). The 
Value of Lost Load (VOLL) expenses, DGS unit running costs, load decrease from 
implementation, and user Expected Energy Not Served (EENS) prices are all examples of 
uncertain operational costs.
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Wherever, sPr is the probability of scenarios. The two types of operational costs are known as 
definite and uncertain, respectively. T is denoted as the time. Here, D  denoted as the total 
operating cost.
The pollution emission function encompasses emissions generated by activities such as DGS 
operation and emissions resulting from grid purchases. Pollutants considered include CO2, SO2, 
and NO2. This allows for the derivation of a statistical model for the pollution function.
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Here, t  is denoted as the time, e  is denoted as the actual wind speed of wind turbine.

3. Proposed Methods for Smart Grid System with Renewable Energy Sources
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This paper proposes a smart grid system with renewable energy sources using hybrid CapSA 
GR-RNN approach. The GR-RNN approach is used to forecast the behaviour of RES, such as 
solar and wind PDF and CDF, while the CapSA is used to maximise the performance of smart 
microgrids. This proposed method to evaluate the performance of smart grid systems amidst high 
integration of RES. By combining the optimization capability of CapSA with the predictive 
power of GR-RNN, the research aims to provide a comprehensive assessment framework for 
smart grid operations under diverse conditions. 
3.1. Capuchin Search Algorithm 
The CapSA impersonators the active lifestyle of these primates in the wild, drawing inspiration 
from their foraging habits. The CapSA is used to optimize the performance of smart microgrids. 
Just as capuchins balance exploration of new foraging areas with exploitation of known food 
sources, In order to take advantage of promising answers and explore new areas of the solution 
space, the algorithm dynamically modifies. It introduces randomness and diversity akin to the 
capuchins' varied foraging behaviors, while also making effective use of global and local search 
techniques to traverse complicated solution spaces. Through iterative improvement, the 
algorithm converges towards optimal or near-optimal solutions, reflecting the adaptive nature 
and problem-solving prowess observed in capuchin monkey life. Capuchin monkeys move about 
and roam around on the ground and in trees in search of food sources [23]. CapSA Flowchart is 
depicted in Fig 2.
Step 1: Initialization
To initialize the input factors such as solar irradiance, current , voltage and wind speed.
Step 2: Random Generation
Following setup, the accidental vectors generate the input limits at random.
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Where, n
 
is indicated as the prime parameter and d is denoted as the dimension of the desirable 

variables. 
Step 3: Fitness Calculation
The goal function is used to pick the fitness and is represented as,

)min(MF                                                                                                                               (21)  
Where, M  denoted as the total operating cost.
Step 4: Exploration Phase
Exploration frequently entails introducing randomness into the search process, which may 
involve generating new candidate solutions through mutation or random sampling. The proposed 
technique finds global solutions that represent food sources to solve optimisation problems with 
predetermined dimensions, as was previously described. This is accomplished by repeatedly 
revising the stances of leaders and followers until they converge on the global solutions, or food 
sources. As a result, the proposed algorithm's computational complexity is defined as follows:

   PCPDkVo                                                                                                                        (22)
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Where, V is denoted as the quantity of testing experiments, K is indicated as the most iterations 
possible, P is denotes the amount of solutions, D is indicates the maximum quantity of retries 
feasible,  and C denotes the price of the optimisation problem's objective function.
Step 5: Exploitation Phase
Any meta-heuristic algorithm's efficacy is determined on how well it can reconcile the needs of 
exploration and exploitation. First, the algorithm uses a predetermined number of solutions from 
the population of capuchins to explore the search space. As the search progresses and the 
algorithm seek food sources, the emphasis on exploration decreases while exploitation becomes 
more prominent. Exploitation entails utilizing promising solutions already discovered to further 
enhance their quality.
Step 6: Update the Best Solution
This experimental test's objective is to evaluate CapSA's exploring capabilities, particularly on 
fixed-dimension multimodal functions. Additionally, CapSA is noted for its consistently low 
Standard Deviation (STD) values across various functions compared to other optimization 
algorithms. All things considered, the average and standard deviation of the best solutions found 
after thirty separate runs show that CapSA reliably produces higher performance levels. In this 
context, the lifetime of CapSA is managed through an exponential function proposed within the 
algorithm to, as Equation (23), illustrate, efficiently strike a balance between exploitation and 
exploration throughout both local and global search operations.
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



 k
K

E                                                                                                                       (23)
Here, K and k denote the current iterations and values of the maximum, correspondingly. The 
parameters ,0 1 , 2 remain chosen at random to be 2, 21, and 2. The proposed approach 
explores the search space with a suitable number of solutions using the exponential function  , 
with each search region being used by the individuals in order to identify the best solutions. 
Step 7: Termination
The process halts when the solution is deemed the best possible, but if it's not, it goes back to 
Step 3 where it calculates fitness and continues with the following steps until the best solution is 
found..
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Fig 2: Flow Chart of CapSA

3.2. Global-Context Residual Recurrent Neural Networks (GCR-RNN)
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The segmentation sequence of the local feature is combined with the global-context data in the 
proposed residual RNN block, is explained in detail in this section.
Each sequence fragment's feature vector is acquired by means of global average pooling, 
yielding a feature vector of size. The feature dimension is then increased from 256 to 512 using a 
Fully-Connected (FC) layer, which brings it into alignment with the global-context feature. To 
capture the spatial relationships of each fragment, the feature vector sequence is subsequently 
input into Gated Recurrent Units (GRU) [24]. The following is the definition of GRU, a 
simplified recurrent neural network enhanced:

 z
t

ztt VFUxWz  1
2                                                                                                         (24)

 r
t

rtrt VFUxWr  1                                                                                                         (25)

  h
t

ththt VFrUxWh  1                                                                                               (26)

  tt
t

t
t hzFzF   11                                                                                                      (27)

Here, tF  is indicated as the global context feature at the time step t and tx  is denoted as the 
fragment feature vector tz  and tr  are represented as the sigmoid is used to reset and update the 
gates  x  as the activation function.  x  is represented as the tangent function hyperbolic and 

*** ,, bUW  are represented as the training-induced parameters. The GRU is represented by
 1,  t

t
t FxGRUF                                                                                                                     (28)  

Inspired by the residual network, it proposes the global-context residual GRU as follows to fully 
using the local fragmentary characteristics' handwriting style information:

    Gt
t

t
t FFtxFxGRUF   01 ,8,....,2,1,                                                                     (29)

Here the local feature tx  at time step t is used by RNN to update and enhance the feature vector 
tF , which is initialised by the global-context GF . Each feature vector tF  that is produced as a 

result of GRU's context modelling includes both local and global discriminative information. 
Ultimately, the input image's final feature vector, F , is calculated using:





8

1t

tFF                                                                                                                                    (30)

Continuing from the previous context, we then have a classifier with a soft-max layer comprising 
N  output neurons. Where F  refers to the feature vector. Finding a DCRNN model and training 
a FNN on it for the purpose of choosing an OC policy are the two steps of the RCNN training 
challenge. First, we describe the RNN (and DCRNN) training issue. Next, we provide the 
DCRNN model extension as the basis for the RCNN and outline its training issue. Assume that a 
nonlinear open-loop dynamical system governs the dynamics of the environment or system 
process, and that the model is unknown. Let  110 ,...,, nUUU  be an order of the dynamical 
system's inputs and  110 ,...,, nYYY  the matching series of tangible results, 
with ,eU

s rU  .eY
s rY   To identify a system, one trains an RNN model in the format

 XTTTXT UYXfX ,,,1                                                                                                        (31)
 XTY XfY ,ˆ                                                                                                                            (32)    
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The Markovian state-space dynamics are explained by Xf  and Yf , which are respectively 
parameterized by the weight/bias factors of victories and Xe

X r    and Ye
Y r   . The RNN 

hidden state is represented by eX
e rX  , and its forecast for the system visible at time T is 

represented by eY
e rY ˆ . The purpose of the identification job is to train the RNN to encode 

relevant information about the hidden states TX  of the genuine system. Apart from being 
supplied as external inputs to the state-update function, the observables eY  are also assigned as 

the targets for the RNN predictions eŶ . The idea behind this study is to learn eX  and the 
parameter vectors X , Y  simultaneously in the context, which is similar to the direct multiple 
firing method to OC issues. In order to do this, the learning goal is formulated as an equality-
constrained problem. 

     



UE

T
TTYXZ

YYLXrZF ˆ,,,:min 0                                                                                  (33)

Where, a regularization term r is representing. Both the loss function L  and r  are assumed 
possess second derivatives that exist and are continuous with respect to their arguments.
4. Result and Discussion
This section explains the results from the simulation and talks about how well the new method 
works [25]. The main goal of this method is to use as much renewable energy sources as possible 
while lowering costs and reducing pollution. The simulation of the CapSA-GR-RNN technique 
is explained below. The control setup was created in the MATLAB platform, and its 
performance was compared with other existing methods like PSO, SSA, and GWO. The results 
are divided into three cases: 1) How well the method works with PV, WT, FC, and a battery. 2) 
How well the method works with PV, FC, and a battery. 3) How well the method works with 
WT, FC, and a battery.
Case 1: Performance analysis of proposed method under PV, WT, FC, Battery
Analysis the power of renewable energy sources (a) generation power 1 (b) generation power 2 
is shown in Fig 3. In generation power1, the demand is initially starts from 3kW at 1hour and 
increases and decreases. Then the demand is finally reach as 2.7kW at 24hour. The PV is 
initially starts from 1kW at 1hour and increases and decreases. Then the PV is finally reached as 
0.9kW at 24hour. The WT is initially starts from 1kW at 1hour and increases and decreases. 
Then the wind turbine is finally reaches 0.9kW at 24hour. The FC is initially starts from 0kW at 
1hour and increases and decreases. The FC is increase at point 3kW at 2.5hour.  Then the FC is 
finally reaches 0kW at 24hour. The battery is initially starts from 2.3kW at 1hour and increases 
and decreases. Then the battery is finally reaches 1.7kW at 24hour. These are shown in Fig 3(a). 
In generation power2, the demand is initially starts from 5.2kW at 1hour and increases and 
decreases. Then the demand is finally reach as 5.4kW at 24hour. The PV is initially starts from 
0kW at 1hour and increases and decreases. Then the PV is finally reached as 0kW at 24hour. The 
WT is initially starts from 1kW at 1hour and increases and decreases. Then the wind turbine is 
finally reaches 0.9kW at 24hour. The FC is initially starts from 2kW at 1hour and increases and 
decreases. Then the FC is finally attains 1kW at 24hour. The battery is initially starts from 0kW 
at 1hour and increases and decreases. Then the battery is finally attains 0kW at 24hour. These are 
shown in Fig 3(b).
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Fig 3: Analysis the power of renewable energy sources (a) generation power 1 (b) generation 
power 2.

Fig 4: Analysis the SOC
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Fig 5: Comparison of cost for existing and proposed approach (a) Jan cost (b) July cost
Analysis the SOC is shown in Fig 4. The SoC is initially starts from 60% at 3hour and increase 
and decreases. The SoC is increase at point 135% at 10hour and then finally reach as 38 % at 
24hour. Comparison of cost for existing and proposed approach (a) Jan cost (b) July cost is 
shown in Fig 5. In PSO approach the cost is 1.08$ In SSA approach the cost is 1.06$. In GWO 
approach the cost is 1.04$. In proposed approach the cost is 1.02$ which is lower than other 
existing system. These are shown in Fig 5(a). In PSO approach the cost is 1.2$In SSA approach 
the cost is 1.06$. In GWO approach the cost is 1.04$. In proposed approach the cost is 0.97$ 
which is lower than other existing system. These are displayed in Fig 5(b).
Case 2: Performance analysis of proposed method under PV, FC, Battery
Analysis the power depicted in Figure 6 illustrates the dynamics of various energy sources and 
their contributions over a 24hour. Initially, in the generation power1, the demand commences at 
5 kW at 1 hour and fluctuates over time, eventually stabilizing at 5.2 kW by the 24th hour. 
Concurrently, the PV generation initiates at 0.9 kW at 1 hour, exhibiting fluctuations throughout 
the day, and culminates at 3 kW by the 24th hour. The FC contribution begins at 0 kW at 1 hour 
and fluctuates until a notable increase to 5 kW is observed at the 13th hour, before tapering off to 
0 kW by the 24th hour. Regarding the battery, its discharge initiates at 4.2 kW at 1 hour, 
experiencing fluctuations similar to the other sources, and ultimately decreases to 2.3 kW by the 
24th hour. 

Fig 6: Analysis the power
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Fig 7: Cost comparison between the proposed and existing approaches (a) Jan cost (b) July cost
Cost comparison between the proposed approach and existing methods is shown in Figure 7. For 
January, the PSO method costs $1.10, SSA costs $1.09, GWO costs $1.07, and the proposed 
method costs $1.05, which is the lowest. These results are shown in Figure 7(a). For July, the 
PSO method costs $1.08, SSA costs $0.98, GWO costs $0.96, and the proposed method costs 
$0.93, which is again the lowest. These results are shown in Figure 7(b).
Case 3: Performance analysis of proposed method under WT, FC, Battery
Analysis the power of renewable energy sources (a) generation power 1 (b) generation power 2 
is shown in Fig 9. In generation power1, the demand initially starts at 3.2 kW at 1 hour and 
fluctuates throughout the 24hour, ultimately reaching 2.7 kW. The WT begins at 3 kW at 1 hour, 
fluctuates, and eventually diminishes to 0 kW by the 24th hour. The FC starts at 1 kW at 1 hour, 
experiences fluctuations, and notably increases to 4 kW at the 12.5th hour before returning to 0 
kW by the end of the 24hour. The battery starts at -1.03 kW at 1 hour, fluctuates, and finally 
reaches 1.8 kW by the 24th hour. These data are depicted in Fig 9(a). In generation power2, the 
demand starts at 5.4 kW at 1 hour and fluctuates similarly to power1, reaching 5.5 kW by the 
24th hour. The WT, beginning at 3 kW at 1 hour, also experiences fluctuations and diminishes to 
0 kW by the end of the 24-hour. The FC begins at 1 kW at 1 hour, fluctuates, and eventually 
decreases to 0.9 kW by the 24th hour. The battery, starting at -1.1 kW at 1 hour, fluctuates and 
finally reaches 2 kW by the 24th hour. These details are illustrated in Fig 9(b).

Fig 9: Analysis the power of renewable energy sources (a) generation power 1 (b) generation 
power 2
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Fig 10: Cost comparison between the proposed and existing approaches (a) Jan cost (b) July cost
The comparison of costs between the new method and the current methods is shown in Figure 
10. For January costs, the PSO method costs $10,700, the SSA method costs $10,500, the GWO 
method costs $10,000, and the new method costs $9,500, which is less than the other methods. 
These results are shown in Figure 10(a). For July costs, the PSO method costs $1.13, the SSA 
method costs $1.08, the GWO method costs $1.05, and the new method costs $0.98, which is 
again lower than the other methods. These results are shown in Figure 10(b).4.1. Discussion
The analysis conducted across three cases offers valuable insights into the performance and cost 
efficiency of renewable energy systems, comparing existing methodologies with the proposed 
approach. In Case 1, the examination of power generation and state of charge reveals the 
intricate interplay among demand, renewable energy sources, and storage technologies. Notably, 
the proposed method consistently showcases lower costs than current approaches, demonstrating 
its effectiveness in both January and July scenarios. Case 2 further underscores the efficacy of 
the proposed approach in optimizing power generation and reducing expenses. Despite 
fluctuations in demand and renewable energy output, the proposed method consistently 
outperforms existing strategies, delivering significant cost savings. Lastly, in Case 3, a thorough 
analysis of power generation across different scenarios highlights the versatility of the proposed 
approach in managing varying demand and renewable energy availability. The cost comparison 
underscores the superior cost-effectiveness of the proposed method across diverse scenarios and 
seasonal variations. Overall, these results indicate that the proposed approach not only efficiently 
handles power generation and storage but also offers substantial cost reductions compared to 
existing methods across various scenarios and timeframes. These findings suggest promising 
prospects for widespread adoption of the proposed approach, attractive both sustainability and 
economic viability in renewable energy systems.
5. Conclusion 
This study introduces a combined method for a smart grid system that uses a lot of renewable 
energy sources. Since one algorithm might not work well in all situations, the study uses two 
algorithms together: CapSA and GR-RNN. The GR-RNN part helps predict how renewable 
sources like solar and wind will behave, such as their probability and distribution. The CapSA 
part helps make the smart microgrids work as well as possible. The main aim of this method is to 
make the most use of renewable energy while keeping costs low and reducing pollution. The 
method was tested using MATLAB and compared with other commonly used methods. The 
results show that the proposed method works superior than methods like PSO, SSA, and GWO. 
The cost was found to be $1.08 with PSO, $0.93 with the proposed method, $0.98 with SSA, and 
$0.96 with GWO. Future research should focus on improving and expanding this hybrid 
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approach for smart grids with a lot of renewable energy. This could include using more 
optimization techniques and machine learning to make the system more accurate and efficient. 
Looking into new algorithms or mixing existing ones might provide new ideas for managing 
smart grids with different renewable sources. Also, using real-time data and better predictive 
models could help make smarter decisions in the grid. Studying the economic impact and how 
well this method can be scaled up will help understand if it's practical and sustainable in the long 
run. Checking how technologies like blockchain or IoT can be used to manage data and security 
in smart grids could lead to more progress in this area.
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