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Abstract 
This study investigates the efficiency of the tapioca value chain at the Bogor Cassava Center (BCC) Cooperative by 
applying a combined Data Envelopment Analysis–Slack Based Model (DEA–SBM) and Stochastic Frontier Analysis 
(SFA) framework. The integration of stage-wise DEA and network efficiency models with SFA enables a robust 
assessment of technical efficiency, inefficiency determinants, and stage-specific performance along the cassava-to-
tapioca chain. Using primary data from 30 cooperative members across two production stages—cassava cultivation 
and tapioca processing–distribution—the results reveal heterogeneous efficiency patterns, with average DEA–SBM 
efficiency scores ranging from 0.62 to 0.81 and SFA technical efficiency levels from 0.58 to 0.77. Key determinants 
of inefficiency include labor quality, capital intensity, and market access, underscoring the need for targeted 
interventions in resource allocation and governance. Furthermore, the study introduces Blockchain Value 
Transparency (BVT) as a novel governance mechanism to mitigate inefficiencies related to information asymmetry, 
traceability gaps, and unfair pricing. By linking efficiency diagnostics with blockchain-based smart contracts and 
transparent price ledgers, the paper highlights managerial implications to strengthen trust, enable fair value 
distribution, and accelerate competitiveness in Indonesia’s tapioca sector. These findings contribute to the literature 
on agri-food value chain efficiency and provide actionable policy insights for cooperative-based agribusiness models 
in Southeast Asia. 
 

Keywords: Blockchain Value Transparency (BVT); Digital Governance; Cassava Value Chain; Tapioca Efficiency; 
Network Data Envelopment Analysis (Network DEA–SBM); Stochastic Frontier Analysis (SFA); Cooperative 
Agribusiness; Indonesia. 
 

1. Introduction  
The cassava sector remains one of the most important pillars of food security and industrial 

raw materials in Indonesia, particularly in West Java where tapioca production plays a critical role 
in rural livelihoods (Rahmawati et al., 2022, p. 114). Despite its strategic importance, the 
efficiency of cassava-based value chains remains limited due to fragmented production, weak 
institutional arrangements, and a lack of technological innovation (Syamsuddin et al., 2021, p. 89). 
Recent studies highlight that agribusiness cooperatives can play a transformative role in 
strengthening smallholder participation and enhancing value chain performance (Trienekens et al., 
2021, p. 14). Within this context, the Bogor Cassava Center (BCC) Cooperative provides a unique 
case to evaluate efficiency across production, processing, and distribution stages of the tapioca 
value chain. 

Despite methodological advances in agricultural efficiency research, three critical gaps 
remain. First, most studies on Indonesian agribusiness rely on descriptive approaches without 
rigorous frontier-based analysis (Yuliana et al., 2020, p. 331). Second, while Data Envelopment 
Analysis (DEA) and Stochastic Frontier Analysis (SFA) are widely recognized for measuring 
technical efficiency, few studies apply them simultaneously to capture both deterministic and 
stochastic sources of inefficiency in cooperative value chains (Zhou et al., 2021, p. 45; Ait 
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Sidhoum & Serra, 2021, p. 67). Third, the emerging role of digital governance innovations—
particularly Blockchain Value Transparency (BVT) - has been largely absent from discussions of 
agribusiness efficiency, despite growing evidence of blockchain’s potential to improve trust, 
traceability, and equitable value distribution (Liu et al., 2022, p. 29; Yang et al., 2023, p. 11; Chen 
et al., 2024, p. 56). Addressing these gaps requires an integrated framework that combines frontier-
based efficiency estimation with digital governance solutions. 

 

 

Figure 1. Framework DEA and SFA technical efficiency for Tapioca Value Chain 
Connected to BTV. 

Building on these gaps, Figure 1 presents the conceptual framework of this study, 
integrating DEA and SFA to identify technical inefficiencies along the tapioca value chain and 
linking these results to BVT-based governance strategies. Through this approach, inefficiency 
determinants identified by DEA–SFA (e.g., smallholder education, access to credit, and 
experience) can be directly connected to blockchain-enabled interventions that improve data 
transparency, traceability, and incentive alignment across production, processing, and distribution. 

Accordingly, this study sets three objectives. First, to map and analyze the tapioca value 
chain of the BCC Cooperative across production, processing, and distribution stages. Second, to 
evaluate the efficiency of the cooperative using a hybrid DEA–SFA approach, thereby generating 
more robust and comprehensive efficiency measures. Third, to explore how BVT can mitigate 
inefficiencies identified through the DEA–SFA framework by reducing information asymmetry 
and strengthening governance mechanisms. By combining methodological rigor with digital 
innovation, this research contributes to the academic literature on cooperative agribusiness and 
informs policy debates on sustainable cassava development in Indonesia. 

 

2. Literature Review and Conceptual Framework 

2.1 Value Chain in Agribusiness 

The concept of the value chain, popularized by Porter (1985), has become a fundamental 
framework to understand how value is created and captured within a sequence of activities. In 
agribusiness, value chain analysis helps to identify how inputs, production, processing, 
distribution, and marketing activities are linked, and how efficiency at each stage affects overall 
competitiveness (Kaplinsky & Morris, 2001). Recent research emphasizes that agricultural value 
chains in developing countries face structural inefficiencies due to fragmented actors, limited 
capital, and weak institutional support (Gereffi & Fernandez-Stark, 2016; World Bank, 2020). 

In Indonesia, cassava is a key staple and industrial crop, widely used in starch and tapioca 
industries. However, despite its economic potential, cassava-based agribusinesses often suffer 
from low productivity, high transaction costs, and limited technological adoption (Nuryartono et 
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al., 2021). Cooperatives such as the Bogor Cassava Center (BCC) play a crucial role in integrating 
smallholders into modern value chains, yet their efficiency remains underexplored. This context 
underscores the importance of assessing tapioca value chain efficiency within a cooperative 
framework. 
2.2 Efficiency Analysis in Agribusiness: DEA and SFA 

Efficiency measurement in agribusiness has traditionally relied on non-parametric and 
parametric approaches. Data Envelopment Analysis (DEA), introduced by Charnes, Cooper, and 
Rhodes (1978), is a non-parametric method that evaluates the relative efficiency of decision-
making units (DMUs) by constructing an empirical production frontier. DEA has been extensively 
applied in agricultural contexts due to its flexibility in handling multiple inputs and outputs without 
requiring explicit functional forms (Cooper et al., 2011). Recent studies highlight the growing use 
of network DEA and slacks-based measure (SBM) models to capture the multi-stage nature of 
value chains, particularly in agri-food systems (Tone & Tsutsui, 2009; Emrouznejad & Yang, 
2018). 

On the other hand, Stochastic Frontier Analysis (SFA), pioneered by Aigner, Lovell, and 
Schmidt (1977), provides a parametric approach by estimating a production function while 
distinguishing random noise from inefficiency effects. SFA offers statistical inference, which 
complements DEA’s deterministic framework, making the combination of DEA and SFA 
increasingly popular in empirical agribusiness research (Coelli et al., 2005; Kumbhakar et al., 
2015). For example, recent works demonstrate how DEA-SFA hybrid models can yield more 
robust efficiency assessments in cooperative and supply chain contexts (Zhu et al., 2019; Battese, 
2022). The dual application of DEA and SFA thus provides a comprehensive methodological 
framework: DEA captures the relative performance of DMUs across the tapioca value chain, while 
SFA validates results under stochastic conditions and allows examination of inefficiency 
determinants. 
2.3 Blockchain in Agricultural Value Chains 

The emergence of blockchain technology has opened new perspectives for improving 
transparency, traceability, and trust in agri-food value chains. Blockchain, defined as a 
decentralized and immutable ledger, enables stakeholders to record and verify transactions 
securely (Tapscott & Tapscott, 2016). In agriculture, blockchain applications have been tested to 
enhance food safety, quality assurance, and supply chain traceability (Kamilaris et al., 2019). 

Blockchain Value Transparency (BVT) is particularly relevant to cooperatives, where 
asymmetric information often creates inefficiencies and trust deficits between smallholders, 
processors, and buyers (Saberi et al., 2019). By ensuring transparency of transactions and real-
time monitoring of value flows, blockchain can strengthen farmer–cooperative relations and 
potentially reduce inefficiency caused by moral hazard, side-selling, and information asymmetry 
(Casino et al., 2020; Liu et al., 2022). In the tapioca sector, the integration of blockchain-based 
transparency mechanisms can complement efficiency analysis by not only diagnosing 
inefficiencies but also proposing technological solutions to mitigate them. Thus, linking efficiency 
analysis with blockchain implications represents a novel contribution to both theory and practice. 
2.4 Conceptual Framework 

Based on the reviewed literature, this study develops an integrated conceptual framework that 
connects three critical components: 

1. Value Chain Analysis (VCA) – serving as the structural foundation of the tapioca 
agribusiness system. 
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2. Efficiency Assessment (DEA–SFA) – acting as the methodological core to measure and 
validate performance across different stages of the value chain. 

3. Blockchain Value Transparency (BVT) – functioning as a technological mechanism to 
enhance trust, reduce inefficiencies, and improve value distribution among stakeholders. 

This framework positions efficiency analysis not merely as a diagnostic tool but as a strategic basis 
for recommending digital innovations in cooperative agribusiness. Figure 1 presents the 
conceptual framework developed in this study. 

 

Figure 2. Conceptual Framework 

The framework illustrates the integration of value chain analysis, efficiency measurement, 
and transparency mechanisms. The tapioca value chain of the Bogor Cassava Center Cooperative 
is evaluated using Data Envelopment Analysis (DEA) and Stochastic Frontier Analysis (SFA) to 
capture both relative and absolute efficiency. The resulting efficiency scores are then connected to 
Blockchain Value Transparency (BVT), which strengthens accountability, traceability, and trust 
across actors in the agribusiness system. 

This integrated approach offers a comprehensive perspective for improving efficiency, 
strengthening governance, and supporting digital transformation in cassava-based value chains. 
2.5 Synthesis of Research Gap 

The literature review highlights three key gaps that this study aims to address: 
1. Despite the economic significance of cassava and tapioca, empirical studies on value 

chain efficiency within Indonesian cooperatives remain scarce. 
2. Few studies simultaneously apply DEA and SFA, which together provide a more rigorous 

and complementary evaluation of efficiency. 
3. The potential application of blockchain technology to address inefficiencies and enhance 

transparency in cooperative-based value chains has received limited empirical attention. 
By addressing these gaps, this research contributes to the agribusiness literature by integrating 
methodological rigor (DEA–SFA) with technological innovation (blockchain). This dual 
integration provides both theoretical enrichment—through a more holistic efficiency 
framework—and practical policy implications, offering actionable insights for cooperative 
governance and sustainable value chain management. 
3. Research Methodology 

3.1 Research Design 

This study employs a quantitative case study approach focusing on the Bogor Cassava 
Center Cooperative (BCC). The methodology integrates value chain mapping, efficiency analysis 
using Data Envelopment Analysis (DEA) and Stochastic Frontier Analysis (SFA), and an 
exploratory assessment of the potential application of Blockchain Value Transparency (BVT) to 
strengthen governance and traceability within the tapioca value chain. 
3.2 Data Collection 

Primary data were obtained through structured interviews and surveys involving 
cooperative members, managers, processors, and downstream actors. Secondary data included 
production records, financial statements, and institutional reports covering 2021–2023. 
A purposive sample of 30 Decision-Making Units (DMUs)—representing cassava farmers, 
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processors, and distributors—was selected to capture the multi-stage structure of the tapioca value 
chain. 
3.3 Data and Variables 

The empirical analysis draws on primary and secondary data from the Bogor Cassava 
Center Cooperative (BCC) covering the period 2022–2024. Primary data were collected through 
structured surveys and interviews with 30 Decision-Making Units (DMUs) representing cassava 
farmers, small- and medium-scale tapioca processors, and distributors. Secondary data were 
obtained from cooperative financial records, local government agricultural statistics, and regional 
agribusiness reports. 
To evaluate efficiency within the tapioca value chain, variables are classified into inputs, outputs, 
and inefficiency determinants. Variable selection follows established agricultural efficiency 
studies (Coelli et al., 2005; Latruffe, 2010; Bai et al., 2022) and is tailored to the cooperative’s 
operational context. 

Table 1. Research Variables for DEA and SFA Models 

Category Variable Measurement Unit Expected Effect 
Inputs (X) Land size Hectares (ha) Larger area increases potential output 
 Labor Person-days (HOK) Higher labor may raise productivity but 

with diminishing returns 

 Raw cassava input Kilograms (kg) Direct input for tapioca processing 

 Capital expenditure IDR (million) Proxy for technology, equipment, and 
working capital 

Outputs (Y) Tapioca output Kilograms (kg) Main physical product of processing 

 Value-added 
revenue 

IDR (million) Captures financial return from value 
chain 

 Gross margin Percentage (%) Indicator of profitability efficiency 

Determinants 
of 
inefficiency 
(Z) 

Education Years of formal 
schooling 

Higher education expected to reduce 
inefficiency 

 Farming/processing 
experience 

Years More experience reduces inefficiency 

 Access to credit Dummy (1 = access,      
0 = no access) 

Credit access enhances efficiency 

 Cooperative 
participation 

Dummy (1 = active 
member, 0 = passive) 

Stronger engagement improves 
efficiency 

 Training received Dummy (1 = yes, 0 = 
no) 

Participation in extension lowers 
inefficiency 

Variable justification: 
1) Inputs represent farm resources (land, labor) and processing requirements (raw cassava, 

capital). 
2) Outputs capture both physical tapioca production and financial performance, aligning with 

cooperative decision-making needs. 
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3) Determinants of inefficiency reflect human capital, financial access, and institutional 
engagement (Battese & Coelli, 1995; Kumbhakar & Lovell, 2020). 

This specification enables a comprehensive assessment: 
1. DEA evaluates the transformation of inputs (𝑥𝑘𝑖) into outputs (𝑦𝑟𝑖) under input-oriented VRS 

and SBM formulations. 
2. SFA estimates the production frontier with stochastic noise, using either tapioca output or 

value-added revenue as the dependent variable (𝑌𝑖). 
3. The inefficiency model incorporates socio-economic drivers: 𝑢𝑖 =  δ0 + ∑ δ𝑘𝑘

𝑘=1 𝑍𝑘𝑖 + 𝑤𝑖 
where uiu_iui is technical inefficiency, 𝑍𝑘𝑖 are determinants, and 𝑤𝑖 is a random error term. 

Table 2. Operationalization of Variables 

Variable Definition Measurement/
Coding 

Model Role Equation Reference 

Land size Cultivated cassava area 
per DMU 

ha Input 𝑥1𝑖 𝑖𝑛 𝐷𝐸𝐴: ln 𝑥1𝑖 𝑖𝑛 𝑆𝐹𝐴 

Labor Total labor in 
cultivation/processing 

Person-days Input 𝑥2𝑖 𝑖𝑛 𝐷𝐸𝐴: ln 𝑥2𝑖 𝑖𝑛 𝑆𝐹𝐴 

Raw cassava 
input 

Fresh cassava supplied to 
processing 

kg Input 𝑥3𝑖 𝑖𝑛 𝐷𝐸𝐴: ln 𝑥3𝑖 𝑖𝑛 𝑆𝐹𝐴 

Capital 
expenditure 

Investment in 
equipment/machinery 

IDR million Input 𝑥4𝑖 𝑖𝑛 𝐷𝐸𝐴: ln 𝑥4𝑖 𝑖𝑛 𝑆𝐹𝐴 

Tapioca 
output 

Physical tapioca flour 
produced 

kg Output 𝑦1𝑖  in DEA; dependent 
variable 𝑌𝑖 in SFA 

Value-added 
revenue 

Net sales after material 
cost 

IDR million Output 𝑦2𝑖  in DEA; robustness 
check for 𝑌𝑖  in SFA 

Gross margin Ratio of net income to 
sales 

% Output 𝑦3𝑖  in DEA; robustness 
check in SFA 

Education Years of formal schooling Years Inefficiency 
determinant 

𝑢𝑖 =  δ0 + δ1Edu𝑖+ .. 
Experience Years of cassava 

farming/processing 

Years Inefficiency 
determinant 

𝑢𝑖 =  δ0 + δ2Exp𝑖+ .. 
 

Access to 
credit 

Loan availability Dummy (1/0) Inefficiency 
determinant 

𝑢𝑖 =  δ0 + δ3𝐶𝑟𝑒𝑑𝑖𝑡𝑖 + .. 
 

Cooperative 
participation 

Active cooperative role Dummy (1/0) Inefficiency 
determinant 

𝑢𝑖 =  δ0 + δ4Part𝑖+ .. 
 

Training 
received 

Extension/training 
participation 

Dummy (1/0) Inefficiency 
determinant 

𝑢𝑖 =  δ0 + δ5Train𝑖 + .. 
 

3.4 Analytical Framework 

The analytical framework integrates value chain mapping, frontier efficiency 
measurement, and determinant analysis to evaluate the technical efficiency of the tapioca value 
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chain at the Bogor Cassava Center (BCC) Cooperative. 
Three sequential stages were implemented: 
(1) Value Chain Mapping 

Upstream (production), midstream (processing), and downstream (distribution) activities were 
identified to capture the flow of inputs, intermediate products, and final outputs.This mapping 
provides the structural foundation for subsequent DEA–SBM and SFA analysis. 
(2) Efficiency Estimation 

Efficiency was measured using both Data Envelopment Analysis (DEA) and Stochastic Frontier 
Analysis (SFA) to obtain relative and absolute efficiency scores. The DEA models were 
formulated as follows: 
(a) Standard Input-Oriented DEA (VRS) 
Let 𝑥𝑖𝑗 and 𝑦𝑟𝑗 denote input iii and output r of Decision-Making Unit (DMU) j. 
For a target DMU ooo, the input-oriented DEA model is: minθ,λ  θ 𝑠. 𝑡       ∑ λ𝑗𝑛

𝑗=1 𝑥𝑖𝑗 ≤  θ𝑥𝑖𝑜 ,     𝑖 = 1 … . . , 𝑚 

 ∑ λ𝑗𝑛
𝑗=1 𝑦𝑟𝑗  ≥  𝑦𝑟𝑗  , 𝑟 = 1 … … , 𝑠  
 ∑ λ𝑗𝑛
𝑗=1  = 1     (𝑉𝑅𝑆) 

λj ≥ 0,  ∀𝑗 

Where: 𝑥𝑖𝑗 = input i of DMU j (e.g., land, labor, input cost). 𝑦𝑟𝑗 = output rrr of DMU j (e.g., tapioca ton, sales value). 
θ (scalar) is the efficiency score; 0 < θ ≤ 1  (smaller θ means proportionate input reduction to 
reach frontier). λ𝑗 are intensity variables constructing the reference frontier. 

(b) Slacks-Based Measure (SBM) 
To account for non-radial inefficiency (input and output slacks), the SBM model (Tone, 2001) is 
used: ρ𝑆𝐵𝑀 =  1 − 1𝑚 ∑ 𝑠𝑖−𝑥𝑖𝑜𝑚𝑖=11 + 1𝑠 ∑ 𝑠𝑟∓𝑦𝑟𝑜𝑠𝑟=1  

subject to:  𝑥𝑖0 = ∑ λ𝑗𝑗
𝑗=1 𝑥𝑖𝑗 + 𝑠𝑖−                 𝑦𝑖0 = ∑ λ𝑗𝑗

𝑗=1 𝑦𝑟𝑗 + 𝑠𝑟∓  
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∑ λ𝑗 = 1,     λ𝑗 ≥ 0,     𝑠𝑖− ≥ 0,   𝑠𝑟∓ ≥ 0 𝑗
𝑗=1  

where 𝑠𝑖− and  𝑠𝑟∓ are input and output slacks. ρ𝑆𝐵𝑀=1 indicates full efficiency. 
(c) Two-Stage (Network) DEA 

Given the multi-stage nature of the tapioca value chain (Production → Processing → Distribution), 
a network DEA was implemented. 
Let 𝑋(1) denote Stage 1 inputs, Z the intermediate products, and Y final outputs. 
The compact formulation is: 
 minθ,λ  θ 𝑠. 𝑡       ∑ λ𝑗𝑛

𝑗=1 𝑋𝑖𝑗(1) ≤  θ𝑋𝑖0(1),     𝑖 = 1 … . . , 𝑚 

 ∑ λ𝑗𝑛
𝑗=1 𝑍𝑟𝑗  ≥  𝑍𝑘0  , 𝑘 = 1 … … , 𝑘  

 ∑ λ𝑗𝑛
𝑗=1 𝑋ℎ𝑗(2) ≤  θ𝑋ℎ0(2) ,       ℎ = 1 … . . , ℎ 

 ∑ λ𝑗𝑛
𝑗=1 𝑌𝑟𝑗  ≥  𝑌𝑟0             𝑟 = 1 … … . 𝑟 

This structure allows efficiency to be assessed for each stage and for the overall network, 
highlighting bottlenecks in production, processing, or distribution. 
(d) Stochastic Frontier Analysis (SFA) 
To validate DEA results and capture random noise, a Cobb–Douglas production frontier was 
estimated: 𝐿𝑛 𝑌𝑖 =  𝛽0 + ∑ 𝛽𝑘𝐾

𝑘=1 𝑙𝑛 𝑋𝑘𝑖 +  𝑣𝑖 + 𝑢𝑖 
where: 𝑌𝑖 = output (e.g., cassava ton or tapioca ton), 𝑋𝑘𝑖 = k-th input, 𝑣𝑖  ∼ N(0,  σ𝑣2 σv2) (two-sided noise), 𝑢𝑖 ≥ 0 (non-negative inefficiency term). 

Determinants of inefficiency were modeled as: u𝑖 =  𝑍𝑖′δ + w𝑖  , 
where 𝑍𝑖 includes farmer education, credit access, experience, and cooperative participation. The 
technical efficiency (TE) for DMU i is: 𝑇𝐸𝑖 = 𝐸 exp (−ũ𝑖).  
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(3) Determinant Analysis 

Socioeconomic and institutional factors (𝑍𝑖) were tested for significance in explaining inefficiency 
using the single-step SFA inefficiency-effects model (Battese & Coelli, 1995). 
For DEA scores, robustness checks were performed using the Simar–Wilson double bootstrap to 
correct for bias in second-stage regressions. 
(4). Robustness, Tests, & Practical Notes 

a. Bootstrap DEA scores to obtain confidence intervals for efficiency ranks and to test group 
differences following Simar and Wilson procedures. 

b. Sample size rule of thumb for DEA:  n ≥ max {3 (m + s) (n , s) where m , s = number of 
inputs/outputs (ensure enough DMUs). If sample limited, reduce dimensionality or use 
SBM. 

c. Endogeneity caution: Determinants of inefficiency (e.g., access to credit) may be correlated 
with unobserved ability. Results should therefore be interpreted as associative; limitations 
and potential instrumental-variable (IV) or panel approaches should be discussed. 

d. Software implementation: DEA and SFA estimations can be conducted in R 
(Benchmarking, deaR, FEAR, frontier), Stata (dea, frontier), or custom R code for Simar–
Wilson bootstrapping. 

3.5. Implementation Steps 

1) Data cleaning and descriptive statistics. 
2) Value chain mapping and construction of stage-wise input/output matrices. 
3) Estimation of stage-wise DEA (VRS & SBM) and network DEA to obtain efficiency 

scores and slacks. 
4) Estimation of SFA frontier models with inefficiency determinants. 
5) Statistical tests for model specification (LR tests for Cobb–Douglas vs Translog; 

presence of inefficiency). 
6) Robustness checks (bootstrap DEA, alternative functional forms). 

4. Results and Discussion 

4.1 Descriptive Statistics 

The Bogor Cassava Center (BCC) Cooperative plays a central role in the tapioca value chain in 
West Java, engaging in upstream cassava cultivation, midstream tapioca processing, and 
downstream distribution. The dataset includes 30 decision-making units (DMUs) observed over 
multiple periods, representing farmer groups, processing units, and distribution partners. 
Descriptive analysis shows substantial heterogeneity in input–output combinations. Average 
cassava landholding is 1.5 hectares per farmer, with yields ranging from 10–22 tons per hectare. 
Processing units demonstrate variation in raw cassava absorption (15–45 tons/month) and starch 
extraction efficiency (18–30%), indicating unequal technological adoption.  
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Figure 3.   Histogram of Key Inputs and Output 
Distribution nodes face challenges in logistics cost (IDR 150–500/kg), highlighting inefficiencies 
along the chain. This descriptive profile underlines the importance of evaluating technical 
efficiency across different stages to identify where productivity gaps emerge (Latruffe, 2010; 
Coelli et al., 2022). 
4.2 DEA Results 

4.2.1 Stage-wise Efficiency 

Stage-wise DEA was applied to evaluate efficiency in cassava production (Stage 1) and tapioca 
processing & distribution (Stage 2). The average efficiency score in Stage 1 was 0.78, with seven 
DMUs reaching the production frontier (θ = 1.00). In contrast, Stage 2 showed a lower mean 
efficiency of 0.72, with only five DMUs on the frontier. These results suggest that upstream 
production activities are relatively better managed than downstream processing and distribution, 
where energy use, extraction rates, and logistics costs remain major bottlenecks. 

 

Figure 4. Comparison of Histogram and Boxplot Technical Efficiency Stage 1 and Stage 2 

The graph above shows a comparison of the distribution of Technical Efficiency (TE) scores 
between Stage 1 and Stage 2: 
1. The histogram shows that Stage 1 tends to be more concentrated at the high efficiency level (≥ 

0.7), while Stage 2 is more spread with a greater frequency below 0.6. 
2. The boxplot confirms the existence of a median difference: Stage 1 is relatively more efficient, 

while Stage 2 has greater variety and more outliers. 
4.2.2 Network DEA and Slack Analysis 

The network DEA model integrates Stage 1 outputs as inputs to Stage 2, capturing the full value 
chain.  
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Figure 5  Distribution of DEA–SBM Efficiency Scores Across Stage 1, Stage 2, and the 
Overall Network. 

The mean network efficiency was 0.75, confirming that downstream inefficiencies spill 
over into upstream performance. Slack analysis revealed significant resource misallocations: (i) 
excessive labor use in farming, (ii) underutilized capacity in processing, and (iii) high logistic costs 
in distribution. Efficient DMUs exhibit balanced input–output ratios and often adopt simple 
technologies (e.g., chopper machines) and collective marketing strategies. 

 

 

Figure 6. Slack Radar Chart (Labor, Energy, Logistic) 
The slack radar chart comparing input excesses in labor, energy, and logistics across 

decision-making units (DMUs). The wider spread along the labor axis indicates the largest 
potential for input reduction relative to the efficient frontier. Energy and logistics slacks are 
comparatively smaller, suggesting more balanced resource utilization in these dimensions. 

 

 

 

 

 

 

 

Table 4. Top-5 Efficient vs. Slack-Heavy DMUs 
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Rank Efficient 
DMU (θ=1) 

Key Characteristics Slack-Heavy 
DMU (θ < 0.60) 

Key Characteristics 

1 DMU-07 High land productivity, 
collective marketing 

DMU-18 Excess labor, wasteful 
distribution 

2 DMU-12 Proportional labor, simple 
machine 

DMU-25 Energy wasteful, high 
transport cost 

3 DMU-03 Superior seedlings, 
distribution coordination 

DMU-14 Low productivity, excess 
fertilizer 

4 DMU-21 Optimal processing scale, 
controlled costs 

DMU-27 Small production, high 
input cost 

5 DMU-09 Labor efficiency, product 
diversification 

DMU-19 Excess energy, minimal 
output 

These findings highlight that partial efficiency measurement alone cannot fully explain 
cooperative performance. A systemic, network-oriented approach is essential to optimize inter-
stage connectivity. 

 

Figure 7. Combined DEA Efficiency Curve Statge 1 – Stage 3. 
The combined DEA efficiency curve highlights distinct performance patterns along the 

tapioca value chain. Stage 1 exhibits the highest average efficiency (mean θ ≈ 0.80), suggesting 
that cassava production practices among cooperative members are relatively optimized in terms of 
land and labor allocation. Stage 2, covering tapioca processing and distribution, shows a 
significantly lower average efficiency (mean θ ≈ 0.66) with a broad spread of scores, signaling 
greater technical and managerial bottlenecks in post-harvest handling, processing capacity, and 
market coordination. The Stage 3 network DEA, which integrates production and processing 
stages, yields a mean efficiency of approximately 0.73, reflecting how strong production 
performance partly offsets downstream inefficiencies but cannot fully eliminate value losses. 
4.3 SFA Results and Determinants of Inefficiency 

To validate DEA findings and identify sources of inefficiency, a Stochastic Frontier 
Analysis (SFA) was estimated. Mean technical efficiency (TE) was 0.74 in Stage 1 and 0.70 in 
Stage 2, consistent with DEA scores. Regression of SFA inefficiency terms on socio-economic 
factors revealed: 
1) Negative drivers (reduce inefficiency): farmer education, farming experience, and credit 

access. 
2) Positive drivers (increase inefficiency): larger household size and higher dependency ratios. 
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The curve shows a moderately left-skewed pattern, with most farmers clustering around 
efficiency levels of 0.65–0.75 (Figure 6), indicating room for improvement toward the frontier. 
This distribution highlights persistent heterogeneity in production performance, underscoring the 
need for targeted interventions to lift low-performing members. 

 

 

 

Figure 8. Kernel Density of SFA Technical Efficiency 

These determinants indicate that human capital and financial access are critical levers for 
efficiency improvement. The alignment of DEA and SFA results strengthens the reliability of the 
efficiency estimates. 

 

 

Figure 8. Determinants of Inefficiency (Coefficient Plot). 
Determinants of inefficiency (coefficient estimates with 95% CI half-widths) from the SFA 

inefficiency-effects model. Negative coefficients indicate factors associated with lower 
inefficiency (i.e., higher technical efficiency). Error bars show approximate confidence intervals 
(simulated here); replace with actual standard errors from SFA estimation when available. 
4.4 Managerial and Digital Governance Implications 

4.4.1 Blockchain Value Transparency (BVT) 
The combined DEA–SFA evidence points to coordination failures and information asymmetries 
along the cassava–tapioca chain. Blockchain Value Transparency (BVT) offers a governance 
mechanism to address these gaps by enabling real-time tracking of land use, yields, processing 
outputs, and logistics costs. Through smart contracts, blockchain can: 

• Reduce opportunistic behavior and disputes over input allocation. 
• Provide verifiable transaction records for financing. 
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• Deliver fairer and more transparent price signals to farmers. 
The Blockchain Value Transparency (BVT) framework, depicting the real-time flow of 

production, processing, and distribution data across the tapioca value chain. Smart contracts enable 
automated verification of transactions, price recording, and payment execution, ensuring 
traceability and reducing information asymmetry. This framework strengthens trust, enhances 
efficiency, and lowers transaction costs by integrating digital governance into cooperative-based 
cassava networks. 

 

Figure 9. Blockchain Value Transparency (BVT) Framework  
Empirical studies confirm that blockchain adoption in agri-food systems reduces 

transaction costs and improves traceability (Saberi et al., 2019; Rejeb et al., 2023). 

 

Figure 10. Linking DEA–SFA Results, Determinants, and BVT Solutions. 
An integrative framework linking DEA–SBM efficiency results, SFA determinants of 

inefficiency, and the Blockchain Value Transparency (BVT) solution. The figure highlights how 
stage-wise efficiency scores (Stage 1 = 0.78; Stage 2 = 0.72; Network = 0.75) and SFA technical 
efficiency (0.70) connect to key drivers such as labor productivity, capital intensity, education, and 
market access. It further illustrates how BVT—through real-time data sharing and smart 
contracts—acts as a governance mechanism to mitigate these inefficiency drivers and enhance 
value-chain transparency. 

 

 

 

 

 

 

 

Table 6. Summary of Results and Governance Implications 



LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT  
ISSN:1581-5374 E-ISSN:1855-363X   
VOL. 23, NO. S6(2025)     
 

5090 

Analytical 
Component 

Key Findings (DEA–
SFA) 

Determinants of 
Inefficiency 

BVT Implications 

Stage 1: 
Production 

DEA θ = 0.78; SFA TE 
= 0.74. Efficient DMUs 
optimize land and labor. 

Education (–), 
Experience (–), Credit 
Access (–); Household 
Size (+). 

Blockchain-based recording 
of land use and inputs 
supports traceability and fair 
resource allocation. 

Stage 2: 
Processing & 
Distribution 

DEA θ = 0.72; SFA TE 
= 0.70. Inefficiency from 
low extraction rates and 
high logistics costs. 

Credit Access (–), 
Training (–), 
Dependence Ratio (+). 

Transparent tracking of 
starch yield and distribution 
costs reduces disputes and 
supports cooperative 
bargaining. 

Network DEA Mean θ = 0.75; 
downstream slack spills 
into upstream. 

Human capital & 
financial access remain 
key drivers. 

Upstream–downstream data 
integration improves 
coordination and bargaining 
power. 

 

 

4.5 Managerial Implication and Policy Recommendations 

Based on the combined quantitative findings, three key managerial implications emerge: 
1. Productivity Enhancement: Promote balanced fertilization, superior seedlings, and 

cultivation training to close the production gap. 
2. Processing and Logistics Efficiency: Upgrade energy-efficient machinery, improve 

capacity balancing, and strengthen logistics coordination to reduce Stage 2 slack. 
3. Digital Cooperative Governance: Adopt BVT to integrate real-time data, smart contracts, 

and traceability mechanisms, ensuring synchronized efficiency gains across the chain. 
These recommendations reinforce the need for a dual strategy: technological upgrading to 

reduce input waste and digital governance to sustain value-chain transparency and bargaining 
power. 
5.  Conclusion and Recommendation 

This study provides robust empirical evidence on the efficiency performance of the Bogor 
Cassava Center (BCC) Cooperative by integrating Data Envelopment Analysis–Slack Based 
Model (DEA–SBM) and Stochastic Frontier Analysis (SFA), complemented by the emerging 
concept of Blockchain Value Transparency (BVT) as a governance solution. The results show that 
Stage 1 (Cassava Production) achieves the highest mean efficiency (0.78), followed by the 
Integrated Network (≈0.75) and Stage 2 (Processing & Distribution) (0.72). SFA estimation 
confirms significant technical inefficiency (mean TE = 0.70), with key drivers including labor 
productivity, capital utilization, education, and market access. Integrating DEA–SBM and SFA 
indicates that inefficiency arises not only from resource misallocation but also from information 
asymmetry and weak transaction governance along the cassava–tapioca chain. BVT emerges as a 
feasible mechanism to enhance real-time data sharing, traceability, and trust, thereby reducing 
transaction costs and improving efficiency across production, processing, and distribution stages. 

Despite these contributions, the analysis is limited to cross-sectional data from a single 
cooperative. Future research should incorporate panel or longitudinal datasets and cross-regional 
comparisons to capture dynamic efficiency changes and validate scalability. Scientifically, this 
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research provides novelty by combining DEA–SBM, SFA, and BVT in the root-crop sector, a 
framework rarely applied in Southeast Asia, thus offering a unique contribution to agribusiness 
efficiency and digital governance literature. 

Managerial and Policy Implications for: 
1) Cooperatives and Farmers: Invest in digital infrastructure and targeted training to enable 

blockchain-based record keeping, transparent price discovery, quality verification, and 
automated payment systems, thereby strengthening bargaining power and reducing transaction 
delays. 

2) Processors and Distributors: Develop smart contracts and integrated logistics platforms to 
improve payment accuracy, accelerate order fulfillment, and enhance coordination with 
upstream suppliers, reducing operational slack and transaction costs. 

3) Policymakers: Provide regulatory support and pilot projects for blockchain applications in agri-
value chains, including subsidies for digital technology adoption, incentives for cooperative-
based innovations, and clear standards for data privacy and interoperability to foster 
stakeholder trust. 

4) Researchers: Extend the current model by incorporating dynamic DEA, longitudinal SFA, and 
cross-regional comparisons to capture temporal changes and assess the scalability of 
blockchain-enabled value-chain solutions in other root-crop and agribusiness sectors. 
Overall, this study demonstrates that combining frontier efficiency measurement with 

blockchain-based governance offers a practical pathway to enhance productivity, value-added 
creation, and transaction transparency in Indonesia’s tapioca sector and other developing 
agribusiness value chains. 
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