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Abstract:

Brain tumor classification is a pivotal process in medical imaging. The precision and promptitude of a
diagnosis will dictate treatment and affect patient prognosis. Here, | propose a two-phase framework for
the automation of Brain Tumor Detection which integrates Feature Extraction and Classification using
Machine Learning Algorithms. The aim is to extend the concept of Edge Al and run the system on
embedded devices for real-time clinical applications. In the first phase of the project, | designed a feature
extraction system using the GoogLeNet (InceptionVV3) model and evaluated a range of classifiers: SVM,
MLP, XGBoost, LightGBM, Random Forest, AdaBoost, K-NN, and Softmax on the CE-MRI dataset.
Results showcase the system performance, as well as GoogLeNet+ SVM being the best performing model
overall with precision, recall, F1-score, and ROC-AUC measures. As such, this model is the best predictor
of the classifiers designed. Phase 2 involved deploying the optimized models on NVIDIA Jetson Orin
Nano, the embodiment of edge-Al. Advanced quantization (FP16/INT8) and pruning helped to reduce
complexity while sustaining accuracy. A simplified GUI was designed to show input MRI slices, the
predicted tumor class (glioma, meningioma, or pituitary), confidence scores, and device metrics including
latency, throughput, power consumption, and temperature. Live demonstrations proved the framework’s
self-sufficiency, eliminating the need for remote (cloud) resources, allowing rapid, bedside feedback with
increased privacy, and reduced latency. Even though many classifiers showed strong diagnostic accuracy in
Phase 1, in Phase 2 only a few classifiers, specifically GoogLeNet + SVM and GoogLeNet + MLP,
combined the accuracy with the low latency, high efficiency, and thermal stability necessary for edge
deployment. The system’s practicality was further demonstrated by the GUI, which in real time,
successfully classified even the pituitary tumor cases. To summarize, the two-part evaluation shows that
GoogLeNet + SVM achieves the best compromise between diagnostic precision and edge efficiency,
thereby making it the most realistic option for Edge Al healthcare applications in the real-world. Proposed
future directions for this framework include integration of multimodal imaging and federated learning
along with TensorRT model serving for deployment, to build a more complete and clinician-centered
robust decision support system that Al will assist at the edge. This will include additional tumor types.

Keywords: Edge Al, GooglLeNet, Jetson Orin Nano, Quantization, Model Pruning, TensorRT
Optimization, GPU-Accelerated Inference, Computer-Aided Diagnosis (CAD)

1. Introduction

Brain tumors have remained a major health issue with high rate of fatality, difficult
pathology and the necessity to diagnose and treat in time. The diagnosis is based on the
type of tumor through the use of Medical Imaging processing, which has limited
accuracy, leading to significant errors in diagnosis and treatment advice [1]. Under the
influence of these restrictions, deep learning has been integrated into the classification of
brain tumors, enhancing the accuracy of medical image analysis through convolutional
neural networks (CNNSs) that have demonstrated excellent results in tumor detection and
classification [2]. Even with the excellent performance, deep learning models require
very high computational resources which are reserved for high-end workstations and data
centers. Not only can deploying deep learning models on the edge eliminate the need to
always have high-bandwidth connectivity, but it also allows making decisions in real-
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time and with low latency, which is important in time-sensitive medical services,
including brain tumor diagnosis.

Figure 1: Representation of edge computing model can be developed to detect Brain-
tumor.

Embedded edge computing devices are a new technology, as well as systems such as
TensorFlow Lite, that allow amazing artificial intelligence to be performed directly on
battery-powered, palm-sized devices without a data centre or even a decent Wi-Fi
connection [3]. In this paper, Jetson Orin Nano by NVIDIA[4] is the device that achieves
MRI-based brain tumor classification on-site and at a very low cost and a very fast rate.
This study aims to develop and implement a high-performance brain tumor classification
pipeline optimized using TensorFlow Lite (TensorFlow Lite, 2017) on an edge device, as
shown in Figure 1. The study will use a combination of GoogLeNet (InceptionV3) [5]
transfer learning to extract features and apply several machine learning classifiers to
identify the optimal compromise between the accuracy of the classification, the speed of
inference, and resource utilization.

The presented study presupposes designing and implementing a transfer learning-based
classification pipeline, in which the GooglLeNet (InceptionV3) deep convolutional
network will be used as a fixed-feature extractor, employing its hierarchical and multi-
scale receptive fields as the means of learning the robust representations to MRI brain
scans. Selective layers are optimized to such an extent to make pretrained ImageNet
weights fit the domain-specific properties of medical imaging, which alleviates domain
shift between natural and MRI image modalities. This is coupled with one of the most
powerful preprocessing pipelines including intensity normalization, bias field correction,
and more complex data augmentation, including affine transformations, elastic
deformations, and contrast-limited adaptive histogram equalization, to maximize feature
discriminability and better generalization. The framework consists of the comparative
assessment of various machine learning classifiers to make decisions, the use of Support
Vector Machines (SVM) with the optimization of kernel functions, K-Nearest Neighbors
(K-NN) with the dimensionality reduction algorithm (PCA), and an ensemble learner
(Random Forest, XGBoost, LightGBM, and AdaBoost). Hyperparameter optimization is
performed by Bayesian search and nested cross-validation to find the maximum
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classification effectiveness and computational feasibility to be installed on embedded,
and further evaluation of robustness to inter-patient variability, class imbalance, and
noise artifacts evaluated. The trained models are converted and optimized and deployed
using TensorFlow Lite and pruning and post-training quantization strategies (8-bit
integer, floatl6 and hybrid) are used to trim memory footprint and computational
complexity while minimally affecting the accuracy. Delegation to TensorFlow Lite is
used to make use of the CUDA-enabled architecture of the NVIDIA Jetson Orin Nano, in
addition to memory bandwidth utilization profiling, kernel execution time, and model
graph structure to ensure deterministic real-time performance.
Performance assessment is done on accuracy, latency, and resource usage axis, and is
assessed through a multi-metric evaluation model comprising accuracy, precision, recall,
Fl-score, ROC-AUC, Matthews Correlation Coefficient (MCC) and inference
throughput (FPS). Power usage and thermal efficiency of the embedded platform are also
documented to make sure the embedded system can be reliably used over an extended
period in clinical practice. Lastly, the trade-off analysis between predictive accuracy and
real-time responsiveness is carried out and Pareto front analysis is used to plot the
relationship between classification accuracy and inference latency, to understand the
effect of optimization methods such as aggressive quantization versus full-precision
inference on diagnostic reliability, and suggest deployment strategies based on
application-critical requirements, including ultra-low-latency emergency screening cases
and cases where diagnostic review cases are more important. To address these
challenges, this study builds upon edge computing with lightweight deep learning,
aiming to enable accurate, low-latency brain tumor classification directly on embedded
devices.

1.2 Background and Motivation
Brain tumors, be they benign or malignant, present a great diagnostic challenge due to
subtle differences in MRI image patterns, inconsistency among individuals, and the
complicated shapes of the tumor regions. In the planning of treatment, surgical
intervention, and better survival rates, early and accurate classification is a prerequisite.
Magnetic Resonance Imaging (MRI) has been the dominant non-invasive technique to
identify brain tumors, however, the process of manually interpreting it is tedious, has
inter-observer errors, and it needs expertise in a specialized field.Deep learning has
reinvented the field of medical imaging analysis, where CNN-based architectures are
found to achieve the highest results in tumor classification tasks. Nonetheless, the
implementation of these models in clinical settings, particularly in resource-constrained
settings, is challenging since it is computationally intensive. Cloud solutions are capable
of assisting; however, they introduce latency, privacy concerns and depend on a stable
network infrastructure. Edge computing helps fill this gap, moving Al computations as
much as possible to the data source, which makes it possible to perform on-devices Al
computations with minimum latency and improved data privacy. TensorFlow Lite, which
is a mobile and embedded-oriented library, enables conversion and optimization of deep
learning models to execute them effectively on a limited hardware.
This work can be attributed to the necessity to create a cost efficient, portable and real
time brain tumor classification system, which will not rely on the power of powerful
servers. In the effort to show that high-performance tumor recognition can be done on

1430



LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT —
ISSN:1581-5374 E-ISSN:1855-363X LEX-
VOL. 23, NO. 11(2025) LOCALIS

small, energy-efficient devices and is thus a reality, this study will optimize the model to
be used in the Jetson Orin Nano and thereby create the possibility of Al-assisted
diagnostics in remote or emergency applications. Even though advancements have been
made in Al-based brain tumor detection, there is an urgent need to bridge a gap of high-
accuracy classification models to be deployed on low-power and embedded edge devices
to be used in real-time clinical settings. The current strategies tend to rely on cloud-based
servers, or high-end GPUs, and are not suitable in the circumstances of point-of-care
diagnostics that might be resource-constrained. Moreover, it is still difficult to achieve an
accurate-latency-resource-efficiency tradeoff with the deployment of deep learning
models on the embedded system with a limited number of resources. Thus, there is an
urgent demand to develop a light, but high-quality brain tumor classification pipeline,
optimized to work with embedded systems, which would be independent but capable of
working in real-time and preserving the privacy of patient information.
1.3 Significance & Scope of Work
This project is devoted to the creation, optimization, and implementation of a brain tumor
classification system which is designed to work efficiently on embedded edge devices,
and the application scope includes the entire Al pipeline, such as image preprocessing
and deep features extraction on MRI images and the classification model optimization,
compression, and the evaluation of the real-time inference on the NVIDIA Jetson Orin
Nano platform. The domain-specific feature extraction of transfer learning with
GoogLeNet (InceptionV3) is used which uses hierarchical receptive fields to represent
medical imaging data well and a comparative analysis of six machine learning classifiers
is performed to identify the best balance between accuracy and latency to implement
embedded machine learning. The trained models are quantified and pruned using
TensorFlow Lite to attain lightweight operation without significant loss in accuracy and
then they are tested on resource-constrained devices in both high-accuracy and ultra-low-
latency settings. Performance is measured in real time operational conditions, where
inference speed, power consumption and thermal stability are measured in order to make
sure that the system is reliable under prolonged clinical usage. The importance of the
work is that it helps to fill the gap between Al-based medical imaging studies and
practical point-of-care applications without the need to face the constraints of cloud-
reliant deep learning models that create delays, confidentiality issues, and reliance on
networks. Facilitating full on-device inference allows the proposed system to assist in
making clinical decisions faster in an emergency or remote setting, protect patient
privacy by storing data locally, and offer scalable, low-cost diagnostic solutions to areas
with few computational resources in the end not only the development of medical Al
research but also the development of deployable and practical healthcare technologies.
2. Related Works

Magnetic resonance imaging (MRI) is important in automatic classification of brain
tumors, diagnosis, treatment planning, and follow-up. Conventional techniques used
handcrafted items including texture, intensity histograms and shape descriptors, and
classical classifiers, including SVM and random forest. The methods are limited by the
challenges in feature engineering and variations in MRI acquisition protocols [6].
Convolutional neural networks (CNNs), transformer-based models, and hybrid
architectures have been the most popular over the last ten years as they learn hierarchical
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task-specific representations directly on pixel data and multi-sequence MRI inputs (T1,
T2, FLAIR) and have continuously achieved higher scores on benchmark datasets than
traditional approaches. [7].

In spite of the progress in performance, there are still some domain-related problems.
First, the variation in the appearance of the tumor (gliomas and metastases; intra-tumoral
necrosis, edema) causes an imbalance in classes and within-class dispersion, which
complicates the establishment of strong generalization [8]. Second, large-scale
supervised training is constrained by low and expensive expert annotations; these label
shortages have prompted the development of semi-supervised, self-supervised and
active-learning algorithms to reduce annotation effort [9]. Third, MRI scanners,
protocols, and artifacts vary across institutions resulting in domain shift and necessitate
domain adaptation or harmonization methods to implement in the clinical setting [10].
Last but not the least, clinical adoption requires not only high accuracy, but
interpretability, quantifiable uncertainty as well as regulatory approval- actually, none of
the research prototypes that are currently available can meet all the above criteria [11].
Deep learning (DL) has transformed medical image analysis in many tasks, such as
detection, segmentation, classification, and synthesis [12]. Such architectural trends as:
(a) encoder-decoder CNNs (U-Net variants) to perform segmentation and pixel-level
tasks; (b) pre-trained backbones and transfer learning to perform classification when data
are limited; (c) attention mechanisms and vision transformers (ViTs) to learn long-range
dependencies; and (d) generative models (GANs, diffusion models) to learn data
augmentation and modality conversion are present [13]. Self-supervised learning
progress has been notably significant, which has made it possible to train on unlabeled
medical images more strongly and consequently achieve better downstream performance
using fewer annotations [14].

The use of evaluation practices has also grown: multi-center datasets, cross-validation
based on patient-level splits, external validation cohorts, and clinical-task-oriented
measures (e.g. calibration, clinical utility curves) are becoming more common to better
predict real-world performance [15]. Nonetheless, problems of reproducibility remain
because of inconsistent preprocessing, absence of standard splits and underreported
hyperparameters. As a reaction, the recent literature focuses on reproducible pipelines,
benchmarks, and reporting uncertainty and failure modes and average accuracy measures
[16].

Performing inference and some data processing on the edge (as on a medical device or
on-premise accelerator) gives some significant benefits to healthcare applications,
including reducing the end-to-end latency, reducing bandwidth consumption, avoiding as
much dependence on the cloud, improving data locality and privacy, and the ability to
provide real-time feedback in point-of-care scenarios [17]. In such time sensitive
applications of image guidance such as intraoperative, or bedside triage, latency
improvements may be clinically significant. Edge deployment can also lower cost of
operation and services in the less connected environment [18].

Edge deployment involves constraints which drive design of algorithms and systems. The
compression of resource-demanding models (compress, such as compressing, and
quantizing) to resource-efficient forms, architecture search, and the redesign of pipelines
(such as cascaded models, early-exit networks) are required by resource constraints
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(compute, memory, power) [19]. There are real-world robustness problems of edge
devices, such as thermal throttling, variable runtime loads, and hardware accelerator
(CPU, GPU, NPU, TPU-lite) heterogeneity [20]. Governance and privacy are also an
opportunity and a challenge since to have an exposure local data is better but to comply
with the regulation and privacy requirements, there is a requirement of secure firmware,
encrypted storage, and safeguarded model update channels. Lastly, edge Al needs to be
incorporated into clinical workflow through stringent validation, maintainability plans
(OTA updates, model versioning) and explainable in a manner that clinicians are familiar
with [21].

TensorFlow Lite (TFLite) has become one of the most popular models of running
TensorFlow on edge devices [22]. Its main characteristics are model conversion, support
of the various quantization approaches (including post-training quantization, dynamic
range, float16, and quantization-aware training), hardware acceleration through delegates
(e.g., NNAPI, GPU, Edge TPU) and a small runtime with a size that can be embedded
into mobile and embedded systems. With the help of the TFLite workflow, it is possible
to reduce the memory size of models and speed up their inferences, typically with
relatively small accuracy losses, when quantization-conscious training and/or prudent
calibration techniques are used [23].

Recent studies note the use of TFLite to perform medical imaging. Vision transformers
and CNNs have both been effectively quantized and implemented on edge accelerators
with significantly high performance when quantization-aware training and model tuning
are used [24]. TFLite supports delegating machines; in the case of GPUs such as the
TensorRT delegates on NVIDIA Jetson boards, or an Edge TPU such as Google Coral
devices. In spite of this, the responsiveness and extent of supported operations are largely
reliant on the model architecture, as well as, the maturity of the delegate. In this vein, the
final result of finding a tradeoff between accuracy and computational efficiency may
necessarily involve lightweight backbone architecture, separable convolutions, model
compression, and TFLite optimization methods [25]. The literature of brain MRI
classification and segmentation pipeline to embedded hardware (Raspberry Pi, Jetson
series, Coral accelerators) and even microcontroller-grade hardware is still growing [26].
It has been found that (a) small CNN models and backbones trained with transfers can be
used on low-power modules like Jetson Nano or Orin with inference speeds acceptable to
directly address clinical and reinforcement learning tasks; (b) quantization and pruning
can be used to run models on smaller devices like Raspberry Pi, but with a lower
throughput; and (c) end-to-end systems, including preprocessing, inference, and
postprocessing, have been implemented to illustrate the viability of clinical and
reinforcement learning. However, the majority of the published research work is limited
to proof-of-concept studies, frequently done on retrospective or single-center data. There
is a weak indication that prospective clinical validation, cross-institution generalizability
or inclusion in clinical practice. Some of the practical issues brought up in research have
been reliability of on-device preprocessing, addressing thermal and power constraints
when operating under prolonged workloads, updating models to curb drift, and
compliance with regulatory standards of medical devices. Along this line, future
directions are suggested to include validation of compressed models on multi-center
heterogeneous datasets, use of federated or split learning to solve data privacy and use of
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lightweight modules to quantify uncertainties and provide explanations to enhance the
level of trust in on-device inference.

Phase - 1 : Model Developement Phase - 2 : Model Deployement
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Figure 2: Proposed edge computing model flow to detect Brain-tumor in the Edge device
3. Proposed Methodology

The proposed framework as shown in figure 2 as a phase — 1 of Model development and
phase 2 of Model deployment for classifying brain tumours and deploying them on
embedded systems begins with a structural pipeline integrating multi-sequence MRI
datasets that include T1-weighted, contrast enhanced T1 (T1ce), T2-weighted, and
FLAIR modalities, which capture complementary MRI slices coming from repositories
such as figshare for their reliability, variability, and generalization. The datasets, which
include T1, T2, and FLAIR modalities, undergo meticulous preprocessing which
comprises skull stripping, bias field correction, intensity normalization, spatial
registration, and resampling followed by augmentation of elastic deformations and
rotations, CutMix, etc. These steps serve to harmonize the data across scanners and
institutions to improve robustness of the model. The preprocessed volumes are then
piped to Inception V3 (GoogLeNet), the frozen convolutional backbone, for extraction of
spatial feature embeddings which, after global average pooling, richly captures the local
tumor as well as the surrounding tumor of the 2,048—dimensional feature vector space.
The classification phase invokes sophisticated learning algorithms (Support vector
machines, k—Nearest Neighbors, Random Forest, XGBoost, LightGBM, AdaBoost), with
comparative metrics showcasing the supremacy of generalization and accuracy of the
Inception V3 + SVM model over others.

The models undergo Tensorflow Lite conversion, post-training quantization, and
integration of quantization-aware hardware delegates (i.e., GPU, NNAPI, Edge TPU) and
Post Training quantization Chips to enable efficient and real-time inferencing on the
Edge devices such as Raspberry Pi, NVIDIA Jetson, and Google Coral. This allows the
models to be deployed outside of a controlled environment. The models, especially the
tumor classification model, is further refined to be deployed inline as an all-in-one input
output for MRI based tumor predictions. The model is capable of lightweight inferencing
on the embedded systems including ultra resource-poor medical devices and delivers
accurate and valuable predictions. This shows the model possesses real-world and
clinical application.

3.1 Phase 1: Model Development Methodology

The pipeline begins with the acquisition of multi-sequence brain MRI scans (T1, Tlce,
T2, and FLAIR), which serve as the raw input for subsequent analysis. These sequences
undergo a preprocessing stage, including skull stripping, bias-field correction, intensity
normalization, and spatial alignment, ensuring harmonized and standardized inputs
across heterogeneous sources. The preprocessed data is then passed through the
InceptionV3 feature extraction module, which leverages transfer learning from ImageNet
to produce compact, high-dimensional embeddings that capture both structural and
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pathological tumor characteristics. These embeddings are subsequently fed into a range
of machine learning classifiers (SVM, k-NN, Random Forest, XGBoost, LightGBM,
AdaBoost) for robust decision-making and comparative evaluation. Finally, the
optimized models are prepared for deployment through TensorFlow Lite conversion and
quantization, enabling efficient inference with hardware delegate support (GPU, NNAPI,
Edge TPU) on embedded and low-power edge devices. This flow ensures a practical
balance between diagnostic accuracy and computational efficiency, bridging the gap
between advanced deep learning methods and real-time clinical applicability.

INPUT AND PREPARATION

Multi Sequence

Brain MRI Preprocessing

FEATURE ENGINEERING AND CLASSIFICATION (5) DEPLOYMENT

InceptionV3 Machine
Feature Learning
Extraction Classifiers

TFLite
Conversion

Deployment

Figure 3: Proposed Phase 1- Development model
Figure 3 illustrates the workflow of Phase 1: Model Development. The process begins
with the collection of brain tumor datasets, which are then passed into the ML pipeline
and training phase, where preprocessing, augmentation, and feature extraction take place.
The resulting features are used to develop the ML model, which integrates InceptionV3
embeddings with various classifiers. This structured flow ensures that the transition from
raw MRI inputs to trained ML models is both systematic and optimized for performance,
setting the foundation for the subsequent deployment phase.
3.1.1 Dataset Description

The main aim of this research is to identify the different types of brain tumors: gliomas,
meningiomas, and tumors of the sella, which in turn, comprise the most frequently
encountered intracranial neoplasms in day-to-day clinical practice [27]. These particular
tumors were selected not only because of their commonness, but also because of the
significant differences in their biology and patterns of growth: gliomas are diffuse,
infiltrative, intra-axial tumors of glial origin, meningiomas are most characteristically
benign, extra-axial tumors of meningeal origin, and pituitary tumors are those which are
either hormonally active or exert compressive effects and are situated in the sella region.
Regardless of the differences, they are of immense importance in neuro-oncology where
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the precise differentiation of the tumors is of paramount importance for the treatment and
management of the patients. In this study, the author attempts to cover this gap through
the application of four fundamental Magnetic Resonance Imaging (MRI or nuclear
magnetic resonance imaging) modalities: T1 weighted imaging (T1), Contrast-Enhanced
T1 weighted Imaging (T1ce), T2 weighted imaging (T2), and Fluid-attenuated Inversion
Recovery (FLAIR). Each of the imaging sequences offers different types of information:
T1 offers excellent resolution of the anatomy, and T1ce shows lesions which vascularize
in an abnormal way, T2 shows edema and varying consistency of tissues, and FLAIR is
able to delineate the edge of the tumor by suppressing the signals caused by the
cerebrospinal fluid. The combined application of the different sequences offers the
imaging basis necessary to accurately differentiate between glioma, meningioma, and
tumors of the sella.
In this work the use of multi-sequence structural brain MRI datasets with the four widely
used modalities: T1-weighted (T1), contrast-enhanced T1-weighted (T1-Gd or Tlce),
T2-weighted (T2), and Fluid Attenuated Inversion Recovery (FLAIR). Each of them has
differential diagnostic value which facilitates a more thorough characterization of tumor
heterogeneity [23]. In particular, T1-weighted images show the anatomy with very fine
detail, and T1ce sequences show the lesions associated with tumors exhibiting abnormal
vascularization and blood-brain barrier breakdown and enhancement. T2 scans and
FLAIR scans show edema and peritumoral fluid and FLAIR enhances the tumor border
with cerebrospinal fluid suppression.
In the interest of retaining uniformity and ease of comparison across investigations, the
figshare benchmark datasets are used when available. These datasets, created by domain
professionals, contain multi-institution and multi-scanner MRI datasets and, therefore,
are representative of the variability of real-world images and ideal for evaluating the
generalization of a model for different clinical settings. They also provide harmonized
annotations for the three clinically relevant subregions of the tumor: enhancing tumor
(ET), tumor core (TC), and whole tumor (WT). Furthermore, the figshare datasets
provide uniform training, validation, and testing splits with ground truth labels validated
by neuroradiologists to ensure reproducibility and ease of direct comparison to state-of-
the-art methods.

3.1.2 Preprocessing and Data Augmentation
Skull stripping/brain extraction. To reduce non-brain artifacts and enhance feature
robustness, crude brain extractions are achieved through modern CNN-based tools (e.g.
HD-BET, SynthStrip), which surpass conventional maskers within pathological volumes
of the brain [24].
Bias-field correction & intensity standardization. Low-frequency inhomogeneities are
corrected by N4ITK and followed by intensity standardization by scan/sequence to
minimize site/scanner drift. We opt for WhiteStripe (normal appearing white matter
anchor) or z-score normalization within brain masks, both of which are well established
in neuro-MRI and radiomics.
Spatial steps. If needed, volumes are affine-registered to a common space, resampled to
isotropic resolution, and center-cropped/padded to a fixed field-of-view. 2D or 2.5D
stacked images are created on a per-slice basis based on the model input.
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Augmentation. To enhance invariance and reduce overfitting, we apply small
rotations/affine transforms, elastic deformations, flips, intensity jitter, Gaussian noise,
random erasing, and mixup/CutMix on 2D slices or stacks. Given its strong
regularization and localization, the inclusion of CutMix is justified. The next step
involves the extraction of high-level representations from sequences of MRI scans,
utilizing deep learning architectures after preprocessing and augmentation steps are
applied.
3.1.3 Feature Extraction with GoogLeNet (InceptionV3)

The use of convolutional neural networks (CNNs) has an overwhelmingly successful in
the field of feature extraction from medical images, especially in high-dimensional,
complex datasets like brain MRIs [27]. For this, we use InceptionV3, an improved
version of GoogLeNet developed for the ImageNet benchmark and large-image
classification competitive tasks. Its modular factorized convolutions allow for convenient
representation learning and balance the accuracy-complexity ratio, making the model
very attractive in medical image computing applications.

In terms of MRI data classification, we will perform transfer learning on InceptionV3’s
ImageNet weights and borrow its convolutional layer classifiers on top of its backbone
for the rich low-and mid-level visual representations it contains on edges, textures, and
contours. The ridge visual features of the edge classifiers will freeze, and the remaining
backbone visual classifiers will continue learning. These networks have their last
classification layer replaced with include top=False, cutting the models' tops and
preserving their visual backbone for classification. The backbone is then fed with MR
slices input, either single-sequence or a composite of multi-sequence slices, which in turn
shrinks their original sizes to the expected visual input sizes of 299 x 299 x 3. The last
layer of the visual classifiers is also frozen and is a Convolutional layer with Global
Average Pooling, which reduces the representation to a 2,048-dimensional space. This
selection is a highly compensated representative of the MRIs, as it contains more
contextual information as well as the discriminative features. Features such as local
tumors and contextual information will be more pronounced for the subsequent machine
learning classifiers. InceptionVV3 has a robust mechanism for multi-scale feature
extraction, which is one of its strongest points. The network’s ability to capture features
at different spatial scales is the result of filtering parallel convolving with different
receptive fields (1x1, 3x3, 5x5) of the Inception modules. This is very useful for brain
tumor imaging, as lesions vary greatly in size, shape, and texture. Factorized
convolutions, such as substituting a 5x5 convolution with 3x3 stacked 3x3 or 3x1 &
1x3, greatly cut down the cost of computation while still retaining representational
power. Added to this, the auxiliary classifiers provide a structure for deep supervision for
the training phase, which helps alleviate the vanishing gradient problem and stabilize
convergence. In compliance with the InceptionV3 training distribution, the MRIs are
normalized as per the same preprocessing methodology employed for the ImageNet-
trained models. The Polarized set has its input features scaled to the set range of [-1, 1] or
is standardized by the mean, at which the dataset is divided by its standard deviation, as
is the case in the more contemporary deep learning frameworks, Keras and TensorFlow.
This is to minimize the transfer performance cost which is caused by the distribution shift
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between the pre-training phase which is comprised of natural photos, and the fine-tuning
phase, which contains medical images.
Through the integration of InceptionV3's architectural prowess in feature extraction and
multi-sequence MRI inputs (T1, Tlce, T2, FLAIR), the framework captures the
anatomical, structural, and pathological facets of a tumor in a complementary manner.
These advanced feature embeddings offer powerful, agnostic representations that
classical machine learning classifiers (SVM, Random Forest, XGBoost, etc.) can
leverage, maintaining a balance of domain conformity and interpretability for
downstream analyses and predictive modelling.
3.1.4 Classifier Models

In a multi-class scenario, once the hyper-features are derived, head embeddings from the
InceptionV3 architecture will allow the use of the high-dimensional features with a set of
machine learning models to classify and robustly and accurately detect brain tumors. In
addition, alongside deep features, traditional classifiers are explored due to the fact that
this hybrid model approach with deep learning models tends to improve performance
generalization in medical image tasks, especially with small or diverse datasets. Support
Vector Machines, or SVMs, are a good candidate due to their ability to formulate high-
margin decision boundaries, and the use of some non-linear kernels such as the radial
basis function (RBF) which capture the non-linear and overlapping distributions of
tumor and non-tumor tissues. With KNN, or k-Nearest Neighbors, classifiers are offered
an easier way to classify cases by using local approximate features of the entire feature
space, which grants some insight into class separation the embeddings provide, but this
does slow down overall processing. Random Forest classifiers are also a good addition,
as the ensemble of decision trees with the use of bootstrap aggregating also reduces the
chance of overfitting by capturing the non-linear relationships and still over the class
imbalance, which is a common issue in datasets that have a large volume of some tumor
subtypes. XGBoost also does overfitting as a gradient booster for some of the files that
capture the difficult-to-classify files by providing less regression, with more emphasis on
exposing some, which tends to be more XGBoost sensitive. Intended for high-
dimensional data, LightGBM uses a histogram-oriented approach with a leaf-wise
growth paradigm that saves accuracy and speed, along with memory utilization, which
helps with the embeddings at scale, such as InceptionV3’s 2,048-dimensional feature
vectors. Lastly, AdaBoost concentrates on the problem of adaptively reweighting the
misclassified samples, such as infiltrative boundaries and necrotic regions, more during
the next iterations to improve sensitivity and reduce the false-negative rate—which is
important for clinical diagnosis.

3.1.5 Integration & Model development
Each classifier was trained in a single InceptionV3 feature space classifier irrespective of
separated hyperparameter tuning through systematic grid search and stratified cross-
validation to avoid bias and ensure fairness in evaluation. This made it possible to focus
not only on classifier performance but also on the balance scribed among accuracy,
computation, and generalisation. These factors extended beyond single classifier
performance, moving to ensemble-level strategies, including majority voting and
weighted aggregation, to exploit model-level complementary boosting and model-level
redundancy reduction for further variance prediction reduction.
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After the InceptionV3 network extracts high-level feature embeddings, they are
combined with trained machine learning classifiers for robust brain tumor classification.
While deep neural networks capture features hierarchically, generalization improves
when deep networks are paired with classical classifiers, especially in medical imaging
applications with scarce data. For tumor detection, multiple classifiers are tested,
including Support Vector Machine (SVM), k-Nearest Neighbors (KNN), Random Forest
(RF), XGBoost, LightGBM, and AdaBoost, to find the optimal decision-making
classifier.

In order to provide a fair comparison, all classifiers were trained on the same feature
space, derived from InceptionV3. Hyperparameters were systematically tuned using grid
search and stratified cross-validation, ensuring the retention of class balance and tumor
subtype representation. In this case, the strongest classifier was found to be the
InceptionV3 + SVM composite model. Using InceptionVV3 (from the GoogLeNet family),
which acts as a frozen feature extractor (to mitigate the overfitting concern for small
datasets), combined with the SVM to construct high-margin decision boundaries, yielded
superior results. In this case, the SVM classifier's cubic decision boundaries yielded
superior results when using the RBF kernel, as it models the non-linearities associated
with tumor variability better than a linear or polynomial kernel.

The SVM hyperparametric optimization focused on tuning the balancing parameter C
and kernel width y (gamma) through exhaustive grid search on stratified folds. The
validation results provided the basis for the selection of the final parameters, which
enabled strong generalization on previously unseen MRI scans for validation. In
comparative experiments against traditional CNN approaches—such as the fine-tuned
InceptionV3 and InceptionV3 with softmax— the combination of InceptionV3 with
SVM consistently showed the best performance on the metrics of accuracy, recall, and
F1-score. This scenario is the most critical in clinical settings where the cost of false
negatives is very high, making the surrounding performance of the model extremely
valuable. Lastly, strategies at the ensemble level like majority voting and weighted
aggregation which aimed at further enhancing model robustness were also investigated.
Despite this, the accuracy, generalization, and clinical trustworthiness of the hybrid
InceptionV3 + SVM pipeline were the most balanced, confirming the reliability of the
method in brain tumor classification. Out of the entire set of trained models, the
InceptionV3 + SVM hybrid stood out for having the best recall and F1-score making it
the best classifier. Still, the comprehensive evaluation showed all models, whether
margin-based SVM, distance-based KNN, tree-based RF, or boosting models (XGBoost,
LightGBM, AdaBoost), brought independent interpretations of the feature separability
classification problem and thus valuable diversity in the situation.
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3.2 Phase 2: Edge Deployment Methodology

TFLite Models

InceptionV3 + SVM
InceptionV3 + KNN
InceptionV3 + Random Forest (RF)
InceptionV3 + XGBoost
InceptionV3 + LightGBM
InceptionV3 + AdaBoost

Tumer Input

Edge Device

Classified Tumer

Figure 4: Proposed methodology of Phase 2

The next stage, as illustrated in Figure 4, focuses on the implementation of all optimally
trained classifiers on edge-computing systems based on Phase-1 results for real-time
inference deployment in resource-constrained edge environments. Rather than narrowing
down on the best performing model (InceptionV3 + SVM), this phase examines
deployment for all candidate classifiers—SVM, k-Nearest Neighbors (KNN), Random
Forest (RF), XGBoost, LightGBM, and AdaBoost—thus enabling a training performance
vs. deployment performance analysis.
In the last phase of this research, the aim is to achieve real-time classification of brain
tumors at the point of care by deploying the modified deep learning classifiers on the
embedded device NVIDIA Jetson Orin Nano. All the classifiers built during the training
phase (InceptionV3 + SVM, KNN, RF, XGBoost, LightGBM, and AdaBoost) will be
converted to TFLite format for more portable deployment on embedded systems. A
model’s post-training quantization (over flexible ranges, floatl6, or full integer
quantization) and TFLite’s model compression during export also minimizes the
operational burden on the device. The design architecture is hybrid, with the hardware
elements consisting of the Jetson Orin Nano with GPU, CUDA, and TensorRT for
TFLite model computation, and the software system, optimized for real-time, low-
latency, low-bitrate throughput and memory use, stored locally on the device. Gap and
Streamline use the operational delegates, GPU, and TensorRT, to increase model
operational throughput by lowering the available upper bound system capacity.

3.2.1 Jetson Orin Nano Architecture Overview
The next generation Al NVIDIA Jetson Orin Nano edge device focuses on having an
energy-efficient deep learning inference which makes it suitable for tumors that use MRI
scans for detection. This value, along with his next-gen Al capabilities, makes it an
excellent MRI-based tumor analysis tool. Each device is equipped with an Ampere GPU
by NVIDIA, which has CUDA cores for tensor operations acceleration and real-time
inference through Deep Learning Accelerators, and an ARM Cortex A78 AE CPU
cluster for the organization. The MRI inputs and the I/O interfaces like USB, PCle, and
camera that are extremely easy with the imaging systems are all efficiently supported by
the unified LPDD5 subsystem memory. The Orin Nano, powered by the NVIDIA
JetPack SDK, which has CUDA, tensorRT, cuDNN, and optimized TensorFlow Lite
SDK, has the best performance-to-power ratio in comparison to traditional GPU servers.
This enables the device to be used in portable and bedside clinical settings. The
configuration used in the proposed work is depicted in Table 3.1.

\ Component H Specification / Description
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| Component | Specification / Description |

. NVIDIA Jetson Orin Nano Developer Kit (module + carrier board,
Device . -

active cooling)

Memory & 16 GB LPDDR5 RAM; 128 GB NVMe SSD for datasets, models, and
Storage runtime libraries
Operating Ubuntu 20.04 LTS with NVIDIA JetPack (v5.x)
System
Erameworks TensorFlow (training), TensorFlow Lite (deployment), PyTorch

(experimentation)

Acceleration

TensorRT (FP16/INT8 optimization), CUDA/cuDNN, DLAs, Ampere
GPU with CUDA cores

Libraries |OpenCV (MRI preprocessing), NumPy/SciPy (numerical ops)
Monitoring tegrastats (GPU/CPU/memory usage), Nsight Systems (bottleneck
Tools analysis), custom logging pipelines

Efficient deployment of InceptionV3 + SVM and other classifiers for
Use Case

MRI-based tumor detection

Table 3.1: Hardware & Software setup

3.2.1 Deployment Pipeline on Jetson Orin Nano
The deployment pipeline bridges the gap between model development in high-
performance cloud/GPU environments and real-time inference on embedded hardware.
The process is divided into three stages: model transfer, inference execution, and
performance monitoring.

3.2.1.1 Model Transfer
Upon completion of optimizing hyperparameters and quantization of the model after
training, the model is then formatted to the TensorFlow Lite format (quantized .tflite).
This is done to maintain compatibility with lightweight inference engines on embedded
devices. The deployment is done as a reproducible and modular pipeline with three main
components: model packaging, secure transfer, and environment synchronization.
Model Packaging: For the purpose of deployment, creation of a stand-alone package is
created, which contains all the components used during inference. This includes the
quantized ".tflite" model, which is optimized for low-latency execution, as well as the
ultrasound preprocessing tools (Python scripts or compiled binaries), which do the
normalization, resizing, and modality fusion to the training distribution. Moreover, the
label encoders, which map the output of the classifier to clinically understandable labels
(for instance, glioma, meningioma, and pituitary), is included. Along with the encoders
are the configuration and metadata files that contain the model properties such as the
architecture, quantization, and other parameters, which are used during the model
deployment for model traceability. This modular packaging ensures that future updates,
which may include changing the preprocessing algorithms (improved) as well as model
re-training, will still maintain the deployment pipeline.
Secure Transfer: After the files are packaged, numerous protocols can be used to transfer
the files to the Jetson Orin Nano. In development environments, Secure Copy Protocol
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(SCP) over SSH is used from a workstation or cloud server. For high throughput or large
datasets, faster read/write access as well as storage persistence is provided by the NVMe
SSD mounted directly on the Jetson board. In addition, mounted Docker volumes are
used in containerized deployments to allow model packages to be used in prebuilt
inference containers without duplication of files. These methods, along with the rest,
preserve the security, integrity, and flexible deployment options of the data in various
environments.
Environment  Synchronization: Discrepancies between training and inference
environments are minimized by synchronizing the runtime dependencies with the
development configuration. Two strategies are primarily employed, as described below:
Inference environments are made to reduce dependency mismatches by using Docker-
based containers preloaded with TensorFlow Lite runtime, TR Tensor libraries, as well as
supporting packages like CUDA and cuDNN drivers, OpenCV, and NumPy.
Lightweight deployment scenarios on the Jetson Nano are done by using Python virtual
environments where library versions of the TensorFlow Lite runtime, classifiers made by
scikit-learn, and ONNX runtime delegates are managed by the pip or conda package
managers. Version control deployment is possible due to guarantees that models maintain
reproducibility across devices and scalability across multiple edge units in a clinical
network.  This deployment pipeline is built around the primary modules to support
CI/CD due to integration of packaging, secure transfer, and synchronization of disparate
environments. Such an architecture improves the speed at which renewed or new models
become available, while also ensuring that clinical and research workflows, which are
sensitive to usage interruptions and inconsistencies, receive the uninterrupted and
dependable service they demand.

3.2.1.2 Running Inference and Monitoring Performance
The trained models turn Jetson Orin Nano deployment into real-time inference services
as edge computation streams them into processing pipelines. Processes mapping the
estimation step that begin with data and end with its classification are stepwise optimized
for the capabilities of embedded hardware. Once the system receives the MRI
volumetric data in the form of sequences, parts are T1, Tlce, T2, and FLAIR slices and
undergo reformative sequences which use OpenCV and NumPy to change size
appropriate for InceptionV3 (299 x 299 x 3). Such as correction of intensity bias, cross-
correction process, and matrix fusion, which are all done. Distributional gaps, which are
discovered in the inference and training models, are avoided seamlessly, along with the
feature dissimilarity during training and model. Once the system receives the MRI
volumetric data in the form of sequences, parts are T1, Tlce, T2, and FLAIR slices and
undergo reformative sequences which use OpenCV and NumPy to change size
appropriate for InceptionV3 (299 x 299 x 3). Such as correction of intensity bias, cross-
correction process, and matrix fusion, which are all done. Distributional gaps, which are
discovered in the inference and training models, are avoided seamlessly, along with the
feature dissimilarity during training and model
Classification: The feature vectors are computed and sent to the classifiers - SVM, KNN,
RF, XGBoost, LightGBM, or AdaBoost - which are performed as TensorFlow Lite
delegates or run via ONNX engine acceleration depending on the model type. This
modular design classifier allows classification side-by-side benchmarking of different
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algorithms in the same diagnosis environment, providing insight into accuracy, latency,
and resource utilization.
Quantized Inference: Inference has additionally been correlated with execution quantized
graph inference. This is achieved by implementing FP16 and INT8 quantization via
TensorRT delegates, which enables the models to trade bandwidth and latency.
Benchmark results quantization and accuracy are inversely correlated with model
decrease of 70 - 80% and with throughput for near real-time clinical workflows.
Performance Monitoring Workloads with sustained periods of time require constant
monitoring to ensure there is stability. The tegrastats utility, for instance, can provide in
real time CPU and GPU used within the approximation time, the memory type used, and
the thermal conditions of the memory. Custom logging modules capture the amount of
time taken to make inferences and record the classification for further analysis alongside
clinical audit trails. Through systematically optimizing preprocessing, performing
quantized inference, and applying structured monitoring of individual steps of the
pipeline, MRI-based brain tumor classification models achieve optimum latency, energy
usage, and diagnostic performance level. Such a design is necessary to convert machine
learning research into actual machine learning research applied in the field.
4. Experimental Setup & Analysis of Phase |

To secure both the effectiveness of the classification models and their practicality on
embedded edge devices, the experimental configuration consisted of two complementary
phases.
In the first phase, the development of models took place in a high-compute setting
utilizing Google Colab with GPU acceleration. This stage involved training and fine-
tuning models built on InceptionV3 transfer learning, along with a variety of machine
learning classifiers. Before hardware considerations, the aim was to secure high levels of
accuracy, robustness, and generalization on the brain tumor MRI datasets. This was
fundamental to phase 1.
Following this, the second phase of Edge Deployment focused on the real-world
application of the trained models via deployment on the NVIDIA Jetson Orin Nano
platform. Here, the emphasis shifted from accuracy to a comprehensive set of parameters
which included inference latency, throughput, memory footprint, power consumption,
and thermal stability. This phase also tested the models in resource-constrained
environments to demonstrate the real-world feasibility of Al-assisted tumor classification
for point-of-care use. In evaluating the proposed framework, these two phases provided a
complete picture: phase 1 delivered the technical and algorithmic justification for the
approach, and phase 2 delivered evidence of its real-world practicality.

4.1 Data Preprocessing and Augmentation
In order to enhance the consistency of the heterogeneous sources of MRI scans and to
refine the robustness of the classification framework, extensive preprocessing and
augmentation techniques were incorporated before initiating the training. Initially, the
raw brain MRI scans received from Figshare and Harvard were grayscale and of 512 x
512 pixel resolution [27]. These were then resized to 224 x 224 x 3 as required by the
InceptionV3 backbone, in which the grayscale channel was copied thrice to RGB-ify the
input.
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Normalization through min-max scaling was carried out to mitigate inter-patient and
inter-scanner variability by scaling pixel intensity values into the 0-1 range. In addition,
bias-field correction was performed to mitigate low-frequency intensity inhomogeneities,
which are often present in MRI scans. For intra-patient and inter-sequence MRI spatial
alignment, affine registration in combination with center cropping and padding was

performed.

To enhance generalizability and mitigate overfitting, diverse augmentation strategies
were employed, which included geometric transformations (rotations, -elastic
deformations, affine transformations, and flips), intensity modifications (contrast-limited
adaptive histogram equalization, Gaussian noise injection, and intensity jitter), as well as
mixing (CutMix, random erasing, and MixUp). These augmentation techniques
replicated potential clinical variabilities, such as MRI scanner settings, patient
positioning, and tumor morphology. The pre-processing and augmentation pipeline
designed allowed the dataset to maintain biological relevance and diversity, so that the
models learned discriminative features of the tumor and were robust to noise, artifacts,
and imbalance in the dataset. The complete preprocessing and augmentation pipeline is

summarized in
Table 4.1.

| Step

| Description |

Resizing

Images resized from 512 x 512 (grayscale) — 224 x 224 x 3
(RGB channels).

\Normalization

HMin—max scaling applied to pixel values (range [0, 1]). \

Bias-field correction

N4ITK-based correction to reduce scanner intensity
inhomogeneities.

Spatial harmonization

Affine registration and cropping/padding for alignment across
scans.

augmentations

Geometric Small rotations, flips, elastic deformations, affine
augmentations transformations.
Intensity CLAHE (contrast-limited histogram equalization), jitter,

Gaussian noise.

Mixing techniques

Random erasing, CutMix, and MixUp to simulate variability
and reduce bias.

Table 4.1 — Preprocessing and Augmentation Pipeline
4.2 Model Initialization, Architecture, and Training Configuration
The foundation of the proposed framework is based on InceptionV3, which has been pre-
trained on the ImageNet dataset and accessed through the Keras Applications repository.
The top classification layers of the model were also removed to allow the network to act
as a feature extractor for brain MRIs, where the last convolution block produced 2048
feature vectors. The vectors were sent to a lightweight classification head that included a
Global Average Pooling (GAP) layer for dimensionality reduction, a 1024-neuron Dense
layer with ReLU activation for learning tumor-specific discriminative feature, a Dropout
layer (rate = 0.5) for regularization, and a final Dense layer with three softmax activated
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neurons for classification glioma, meningioma, and pituitary tumors and for
classification. This resulted in 23.9 million parameters, of which 2.1 million were
trainable (for newly added layers) and 21.8 million were the frozen InceptionV3
backbone parameters. This means the model utilized pre-trained visual representations
while being computationally efficient for transfer learning. Training was performed using
5-fold cross-validation at the patient-level, which ensured that there was no patient
overlap between training and validation folds on the CE-MRI Figshare dataset.

The Adam optimizer was set to a learning rate of 0.0001, and the learning task employed
the categorical cross-entropy loss function. Each training session was conducted using a
batch size of 32 for a maximum of 30 epochs, which included early-stopping criteria to
minimize overfitting. During training, variability and training set robustness were
attained through the dynamic application of the augmentation procedures outlined in Step
1. Class imbalance was managed through the implementation of stratified batch
sampling. The integrated model structure and training setup are presented in Table 4.2.

Component / Parameter Outp\l;gli Zape/ Param # Status / Description
InceptionV/3 (frozen)  ||(None, 5, 5, 2048) |[21,802,784 :\r']‘l’trl‘a}:;‘éga\?v'ft’hbf‘r%‘;té‘é&eet
GlobalAveragePooling2D|(None, 2048) |0 EZ‘:)‘;CGS convolutional feature
IDense (1024, ReLU) [(None, 1024) 12,098,176 |[Trainable fully connected layer |
Dropout (0.5) (None, 1024) 0 S\fgr‘;:f‘t:irfg‘“o” to reduce

Dense (3, Softmax) (None, 3) 3,075 g:mﬁ;gxga&mﬂgﬁ;m glioma,
Total Parameters — 23,904,035 ?r’ggjr’]ZSl trainable; 21,802,784
Optimizer |Adam - ||Learning rate = 0.0001 |
Loss Function Categorical Cross- || Multi-class classification

Entropy

Batch Size 132 - | Used during training |
o0 ||y b
Validation Strategy \5/;11;?(:2'[?;;)33- B I;a:li((;g:level split to avoid data
Regularization SDtr;)pp;ilrJ]té Early — Prevents overfitting
Augmentation ﬁ?grzzﬁg,i%ixing — Improves generalization

Table 4.2 — Model Architecture and Training Configuration

4.3 Model Evaluation and Performance Metrics
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For the evaluation of the Phase 1 models, both quantitative and qualitative methods were
used. Although the overall performance of the classifiers can be summarized using scalar
metrics like accuracy, precision, recall, and the F1-score, confusion matrices and ROC
curves provide additional insights on the performance of each classifier on the individual
classes and reveal possible patterns of misclassification. This misclassification is of
special concern in the case of medical imaging since the cost of a false negative can be
very high.

The confusion matrices for each of the classifiers used in Phase 1: GooglLeNet
(InceptionV3) with SVM, K-NN, Random Forest, XGBoost, LightGBM, and AdaBoost,
are presented in Figures 4.1-4.6. Each matrix shows the distribution of true vs. predicted
labels for the three classes of tumors (glioma, meningioma, and pituitary).

GooglLeNet + SVM - Confusion Matrix
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Figure 5: GoogLeNet + SVM Confusion Matrix
This model produced the cleanest separation across classes. Out of 293 glioma cases, 282
were classified correctly, with only 11 misclassifications. Meningioma achieved 115
correct predictions out of 143, with minor confusion against glioma and pituitary.
Pituitary tumors were almost perfectly classified, with 169 correct out of 177. This
matrix demonstrates the robust generalization of the SVM classifier, particularly for
glioma and pituitary tumors.as shown in figure 5.
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GooglLeNet + K-NN - Confusion Matrix
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Figure 5: GoogLeNet + K-NN Confusion Matrix
K-NN classifier also showed great results for glioma (293 - 283) and pituitary tumors
(177 - 170), but had a harder time with meningioma where 36 were misclassified and 36
were misclassified as glioma and 13 as pituitary. This exaggerates the K-NN proximity
problem where overlapping feature distributions, as seen between glioma and
meningioma, becomes problematic as shown in figure 5.
GooglLeNet + Random Forest - Confusion Matrix
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Figure 6: GoogLeNet + Random Forest Confusion Matrix
For Random Forest, 277 out 293 for glioma and 170 out 177 for pituitary tumors is great
but misclassifying a large portion of meningiomas, only 68 out of 143, is concerning.
Specifically, 48 meningioma were misclassified as glioma and 27 as pituitary. This
illustrates how although Random Forests are proven as strong general-purpose
classifiers, they also show ill effects of unbalanced medical data as shown in figure 6.
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GooglLeNet + XGBoost - Confusion Matrix
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Figure 7: GoogLeNet + XGBoost Confusion Matrix
XGBoost achieved 280 correct predictions for glioma and 170 for pituitary but showed
strong confusion for meningioma with only 94 correct out of 143. The classifier
misclassifying meningioma, more specifically, 26 cases as glioma and 23 cases as
pituitary, indicates even with strong overall abilities, XGBoost still has a problem with
tumors with intermediate morphological features as shown in figure 7
GoogleNet + LightGBM - Confusion Matrix
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Figure 8: GoogLeNet + LightGBM Confusion Matrix
LightGBM performed similarly to XGBoost, though it was slightly better at classifying
meningioma cases (96 correctly identified). Glioma and pituitary cases were also
predicted correctly and consistently (281 and 172, respectively). These results indicate
that models based on boosting algorithms possess reasonably balanced performance,
though they are not able to completely resolve the overlap problem between glioma and
meningioma, as shown in Figure 8.
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GoogleNet + AdaBoost - Confusion Matrix
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Figure 9: GoogLeNet + AdaBoost Confusion Matrix
AdaBoost was the least competent compared to the other classifiers, though it performed
reasonably on glioma (245/293 correctly classified) and pituitary cases (159/177), the
meningioma classification contained more erroneous predictions. This illustrates the
inability of AdaBoost to approximate the complex, non-linear decision boundaries in the
tumor data compared to SVM and the other gradient boosting methods as shown in figure
9.
The Confusion Matrices clearly showed SVM achieved the most consistent performance,
with boosting-based approaches providing the strongest alternative. In contrast, K-NN,
Random Forest, and AdaBoost demonstrated the least adequate performance, with a
higher error rate on meningioma and thus, a higher error rate overall.
To assess class separability beyond scalar metrics, Receiver Operating Characteristic
(ROC) curves were constructed using a one-versus-rest approach (Figure 10). This gives
an appreciation of the relationship between sensitivity (true positive rate) and specificity
(1 — false positive rate). The trade-off between these two metrics offers a more
comprehensive indication of the diagnostic accuracy of a model than any one of the
metrics could offer in isolation. The results showed that the model exhibited excellent
discriminative power for all tumor types. Glioma (Class 0) achieved an AUC of 0.98,
underscoring the model's ability to accurately and reliably distinguish gliomas from all
other tumor classes. Meningioma (Class 1) recorded an AUC of 0.93, which, although
lower due to overlapping visual features with glioma, still qualifies for clinically reliable
decision-making owing to its proximity to the 0.95 threshold. Pituitary tumors (Class 2)
recorded an AUC of 0.99, indicative of near-perfect separability, consistent with the
near-ideal classification of results illustrated in the confusion matrices. Strong model
performance was also confirmed by the macro-averaged AUC of 0.967 and micro-
averaged AUC of 0.972. This finding confirms that the models established robust and
balanced classification across all tumor types. This, together with the model's overall
accuracy, demonstrates that its clinical diagnostic reliability across individual tumor
classes is strong, which is a necessary requirement for clinical use.
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Receiver Operating Characteristic Curve (One-vs-Rest)
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Figure10: ROC curve of the proposed model
4.4 Performance Metrics

Besides ROC-AUC curves and confusion matrices, other quantitative evaluations per
model included precision, recall, F1-score, and ROC-AUC. All metrics together provide
a complete assessment of the model's classification ability. Here, precision refers to the
proportion of predictive positives that are true; recall refers to the model's ability to
recover true cases; the F1-score provides a composite value of precision and recall, while
the value of the ROC-AUC is the distance between the model's predicted probabilities.
Table 4.5 provides a summary of the results. GoogLeNet + SVM, overall, performed
best with a precision of 0.9223, recall of 0.9233, F1-score of 0.9222, and ROC-AUC of
0.9835 as shown in Table 4.3. His results attest to the model's calibrated performance,
robustly confirming the visual and scalar assessments' consistency. The MLP classifier
also did very well, and with a precision of 0.9055 and ROC-AUC of 0.9833, ranked
closely to the MLP classifier as well. The other gradient boosting methods, XGBoost and
LightGBM, performed well also, achieving ROC-AUC scores very close to 0.98. In
contrast, Random Forest and especially AdaBoost demonstrated the least predictive
performance, as confirmed by the confusion matrices.

In summary, Phase 1 confirmed that the proposed framework achieves high levels of
diagnostic accuracy, robustness, and reliability. Transfer learning with InceptionV3
proved effective, providing rich feature embeddings that advanced classifiers could
leverage. Notably, the models performed at a clinical level, achieving AUC metrics far
exceeding 0.90, which is the gold standard for clinical decision-making support.

Developed Model

Precision

Recall

F1-Score

ROC-AUC

GoogLeNet + SVM

0.9223

0.9233

0.9222

0.9835
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Developed Model Precision | Recall | F1-Score | ROC-AUC
GoogLeNet + MLP 0.9055 0.9070 0.9049 0.9833
GoogLeNet + XGBoost 0.8843 0.8874 0.8828 0.9797
GoogLeNet + LightGBM 0.8942 0.8956 0.8910 0.9794
GoogLeNet + Softmax 0.8780 0.8809 0.8769 0.9705
GoogLeNet + K-NN 0.8924 0.8923 0.8873 0.9621
GoogLeNet + Random Forest 0.8357 0.8401 0.8260 0.9586
GoogLeNet + AdaBoost 0.8155 0.8108 0.8128 0.9124

Table 4.3 — Performance Metrics for Phase 1 Models

Nevertheless, the advanced algorithms demonstrated in Phase 1, while working in a high-
compute environment (Google Colab with GPU Pro support), are not the complete story
for real-world applications. Inaccuracy-tolerable clinical and emergency use cases also
impose stringent requirements on latency, throughput, power budget, and thermal
stability. Consider a model with 97% accuracy that takes a few seconds to analyse a
single slice in an MRI; it is of no use for real-time decision-making support in emergency
rooms or neurosurgery. Thermal and power constraints on onboard low-power equipment
to support models in field testing in clinical contexts are also critical for portable,
resource-constrained environments.

The importance of this drives the need for Phase 2: Edge Deployment Analysis, whereby
the models were deployed on the NVIDIA Jetson Orin Nano. The aim of Phase 2
included assessing the benchmarking of predictive performance, capabilities of real-time
inference, and efficient use of resources. Inference latency, frames per second (FPS), and
estimates of CPU/GPU use, power drawn, and device temperature were recorded to
validate the performance in healthcare surrounding the framework's reliability.

5. Experimental Setup & Analysis of Phase I1I.

After validating the classification framework in Phase 1, the subsequent phase focused
on assessing the practical applicability of the framework in clinical practice. This
involved deploying the trained models on an embedded edge device, specifically the
NVIDIA Jetson Orin Nano Developer Kit. This device was chosen for its optimal blend
of adequate processing power, low power requirements, and easy transport, traits that
render it useful in spaces devoid of high-power computing resources. For this project, the
Jetson was integrated with a camera for the real-time capturing of brain MRI scans, and a
portable screen was attached for on-device visualization of the model predictions. Such
integration of hardware and software is aimed at mimicking point-of-care diagnostic
scenarios, whereby practitioners obtain immediate and dependable MRI predictions to
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assist in clinical evaluations, surgical procedures, and emergency interventions. This
edge configuration is enhanced with real-time, low-latency predictions and reduced
reliance on external data streams, thus addressing critical elements of medical data
privacy.
5.1 Hardware & GUI setup

Phase 2 deployment workflow consisted of four key stages, allowing seamless edge-
based inference. First, the best performing Phase 1 models (SVM, MLP, XGBoost, and
LightGBM) were exported and converted to TensorFlow Lite (.tflite) format, optimized
through post-training quantization (FP16/INT8) and pruning to decrease model size and
maintain accuracy, and efficiently transferred to the Jetson Orin Nano for execution.
Second, Jetson interfacing and on-device preprocessing of OpenCV of brain MRI slices
(resizing to 224x224 pixels, normalization, and channel replication) were used for
preprocessing the images. Third, the quantized models were permitted real-time
execution on the Jetson, visualizing the predictions through a lightweight GUI in the
Python (PyQt/GK) ecosystem.

\ '
Figure 11 (a) Top view of the hardware Figure 11 (b) Side view of the hardware
module module

Figure 11a and Figure 11 b provide a basic overview of the hardware setup, which
includes a Jetson Orin Nano, a camera, and a display. Then, in Figure 12a and Figure 12
b are snapshots of the GUI in operation displayed. This shows the framework moving
from laboratory development to a complete real-time diagnostic assistant embedded
hardware system.

EH 192.168.29.231 (i . desk - RealVNC Viewer - o P

Brain Tumor Edge Model (Jetson Orin Nano) B @ &

s honny - »
Model: GoogleNet + SVM - Device Stats Filay Brain Tumor Edge Model (Jetson ©rin Nano)
R Latency: 42 ms R i Model: GoogleNet + SVM  —
Quantization: FP16 - — g " P e
! ruu.gjp:“;v I > { Prediction  COSLENet + KN
Prediction: Meningioma ower: 7- A | < ;
- GoogLeNet + LightGBM

Temp: 53 °C — e
Glioma - Th e
7Prev | Next? - GoogLemet + softmax
0.27 Run Inference o3 TRrev | Next? | ) euitary =
eningoma -

B T E 0.72
?Prev | : Next? Pituitary ’—

0.00

Figure 12 (a) GUI framework of the Edge Figure 12 (b) GUI framework of all
model algorithms

This GUI consolidated input MRI slices, the predicted class of the tumor (glioma,
meningioma, pituitary), and confidence levels, while presenting a system monitor that
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summarized metrics of device/jetson use, power, temperature, and a passive view of the
predicted class. Predictions were displayed on the Jetson for instantaneous results to
clinicians at the point of care.

5.2 Results and Analysis
To assess how efficient this framework is in embedded situations, the adjusted
benchmarks are set within the embedded scope using the NVIDIA Jetson Orin Nano,
looking at latency, power, and temperature variations within a set period, and thermal
output in relation to the throughputs of Frames Per Second (FPS). These guarantees that
the embedded system in Jetson Nano has the demanded accuracy as confirmed in the
First Phase, and checks meets the embedded system in predictive clinical intervention
use meets all practical requirements in real time.

Model L?'rcﬁg)cy Thr(cl):lf:gst;put PE)VV\\;()er 'I;Eg)p
(GoogLeNet + SVM | 42 24 | 78 | 6
(GoogLeNet + MLP | 4 22 | 81 | 57
GoogLeNet + XGBoost | 55 | 18 | 102 | st
GoogLeNet + LightGBM || 60 || 16 | 108 | 62
(GoogLeNet + Softmax | 48 | 21 | 85 | 58
[GoogLeNet + K-NN | 62 | 15 | 98 | 60
I(:BoogLeNet + Random 20 13 123 64

orest
(GoogLeNet + AdaBoost || 85 | 12 | 127 || 65

Table 5.1 Phase 2 Edge Deployment Performance (Jetson Orin Nano)
In Table 5.1, the system embeds and shows all metrics demanded and needed for this
configuration to work. Figure 13 shows latency, Figure 14 shows overall system
throughput, Figure 15 shows power used, while Figure 16 shows the system temperature
profile. Together this speaks to all the classifiers’ predictive power in relation to
hardware efficiency.
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Phase 2: Inference Latency
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Figure 13 Inference latency of classifiers Figure 14: Throughput (FPS) comparison,
on Jetson Orin Nano, showing SVM and  with SVM and MLP maintaining real-time
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Figure 15: Power consumption during Figure 16: Operating temperature of
inference, highlighting SVM and MLP as the  classifiers, with SVM and MLP maintaining
most energy-efficient stable thermal profiles
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Of all the systems engineered, GoogLeNet + SVM has the least average lag of
42ms/image which is approximately 24 Frames Per Second, uses power within the range
of 7.8 Watts, and has a temperature of 56 Degrees Celsius which is within a normal range
for processing systems. | have also confirmed the engineering of GoogLeNet + MLP, to
which | have put the same systems in Mn for it to obtain comparable results. On the other
hand, Boost based algo systems, excpecially XGBoost and LightGBM were expected to
use comparable power and obtain similar results to Phase 1 (with 0.98

of ROC AUC). However, these models needed to use much more power with higher lag
(from 55 to 60ms). This resulted in a lower throughput and higher power consumption
(10 to 11 Watts).

Random Forest and AdaBoost are similar approaches and still remain underperformers.
With greater than 70 ms latency, under 14 FPS throughput, and 64—65 °C temperatures,
these models pose risks for real-time deployment on constrained hardware. The baseline
Softmax classifier, on the other hand, provided intermediate results (48 ms, 21 FPS, 8.5
W, 58 °C) and although these are efficient results, the predictive performance relative to
SVM and MLP is disappointing. Predictive performance does increase but the classifier
is still underperforming by comparison and relative to MLP.

With the findings on SVM and MLP, it is obvious these are the most clinically viable
classifiers to use for the rest of the Phase 1 work (ROC-AUC = 0.96) on the diagnosis,
coupled with low latency responsive and efficient use of power and thermal equilibrium
from the Phase 2 work. The results do reaffirm the rationale for the two-phase evaluation
pipeline and the routing of the analysis and testing to the two phases. Phase 1 covers the
reliability and accuracy of the algorithms, while Phase 2 assesses the system’s efficacy
against the real-time, resource-constrained clinical environment.

Throughout the entire evaluation process, the combination of GoogLeNet and SVM was
the most dependable and effective classifier. It showed remarkable diagnostic precision
within the first phase, most accurately distinguishing among glioma, meningioma, and
pituitary tumors.

onny - /home/jetsonnanoprem/Desktop/fig/tumer.py @ 4: 33

rain Tumor Edge Model (Jetson Orin Nano)

Model: GoogleNet + SVM - Device Stats

o Latency: 42 ms
Quantization: FP16 —‘ Throughput: 23.8

Prediction: Pituitary
Glioma | ]

0.08 Run Inference ‘

nnnnn gioma [l

0.07

Temp: 53 °C

Fituital

Python 3.10.12

Figure 5.2: Snapshot of the custom GUI running on the Jetson Orin Nano.
Displaying an input MRI slice and the predicted output for a pituitary tumor, along with
class confidence scores.

It also extended and sustained this strength in phase two during edge deployment,
demonstrating rapid inference with effective resource usage and stable thermal dynamics.
This illustrates that the combination of GoogLeNet and SVM performs well and provides
real-time, point-of-care, and clinically relevant practices, solidifying its place as a top

1455



LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT —
ISSN:1581-5374 E-ISSN:1855-363X LEX-
VOL. 23, NO. 11(2025) LOCALIS

candidate for embedded medical Al solutions. This deployment's impact and efficacy are
shown to a greater extent via the custom GUI, which showcased the real-time prediction
of pituitary tumors, demonstrating the Jetson device's capabilities.

6. Conclusion
This study designs a two-phase framework that automates the classification of brain
tumors using machine learning classifiers based on GoogleNet features. In Phase 1, the
models obtained high diagnostic accuracy, with GoogLeNet + SVM being the most
successful. In Phase 2, the optimized models were executed on the NVIDIA Jetson Orin
Nano. Due to quantization and the lightweight GUI, real-time predictions were possible
in point-of-care settings. The GUI presentation, including successful classification of a
pituitary tumor, demonstrated the practical feasibility of the framework. These results
illustrate that GoogLeNet + SVM not only provides impressive algorithmic accuracy but
also performs exceptionally on embedded systems with minimal latency, energy
consumption, and thermal cooling. Optimizing precision and performance validates the
framework's potential as a strong basis for implementing edge Al in bedside diagnostics
and emergency medicine, wherein the most advanced Al models bridge the gap between
deep learning and practical medicine—from the lab to real-world use—for reliability,
speed, and autonomy.Although the current framework is concentrating on three major
tumor types, future work could expand the system to a wider range of intracranial
malignancies like metastatic tumors, lymphoma, or even non-tumorous conditions. The
use of more advanced imaging techniques like fMRI, DWI, and spectroscopy to analyze
and enhance different aspects of the same tumor could also improve the dependability
and strength of the system. Besides, federated learning or on-device continuous learning
will help the model adapt to new datasets over time while keeping the data confidential.
Optimizing the system for TensorRT acceleration and hybrid inference between the GPU
and CPU will help in the reduction of latency as well as the increase of the overall energy
efficiency of the system.
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