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Abstract: 

Brain tumor classification is a pivotal process in medical imaging. The precision and promptitude of a 

diagnosis will dictate treatment and affect patient prognosis. Here, I propose a two-phase framework for 

the automation of Brain Tumor Detection which integrates Feature Extraction and Classification using 

Machine Learning Algorithms. The aim is to extend the concept of Edge AI and run the system on 

embedded devices for real-time clinical applications. In the first phase of the project, I designed a feature 

extraction system using the GoogLeNet (InceptionV3) model and evaluated a range of classifiers: SVM, 

MLP, XGBoost, LightGBM, Random Forest, AdaBoost, K-NN, and Softmax on the CE-MRI dataset. 

Results showcase the system performance, as well as GoogLeNet+ SVM being the best performing model 

overall with precision, recall, F1-score, and ROC-AUC measures. As such, this model is the best predictor 
of the classifiers designed. Phase 2 involved deploying the optimized models on NVIDIA Jetson Orin 

Nano, the embodiment of edge-AI. Advanced quantization (FP16/INT8) and pruning helped to reduce 

complexity while sustaining accuracy. A simplified GUI was designed to show input MRI slices, the 

predicted tumor class (glioma, meningioma, or pituitary), confidence scores, and device metrics including 

latency, throughput, power consumption, and temperature. Live demonstrations proved the framework’s 

self-sufficiency, eliminating the need for remote (cloud) resources, allowing rapid, bedside feedback with 

increased privacy, and reduced latency. Even though many classifiers showed strong diagnostic accuracy in 

Phase 1, in Phase 2 only a few classifiers, specifically GoogLeNet + SVM and GoogLeNet + MLP, 

combined the accuracy with the low latency, high efficiency, and thermal stability necessary for edge 

deployment. The system’s practicality was further demonstrated by the GUI, which in real time, 

successfully classified even the pituitary tumor cases. To summarize, the two-part evaluation shows that 

GoogLeNet + SVM achieves the best compromise between diagnostic precision and edge efficiency, 
thereby making it the most realistic option for Edge AI healthcare applications in the real-world. Proposed 

future directions for this framework include integration of multimodal imaging and federated learning 

along with TensorRT model serving for deployment, to build a more complete and clinician-centered 

robust decision support system that AI will assist at the edge. This will include additional tumor types. 
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1. Introduction 

Brain tumors have remained a major health issue with high rate of fatality, difficult 

pathology and the necessity to diagnose and treat in time. The diagnosis is based on the 

type of tumor through the use of Medical Imaging processing, which has limited 

accuracy, leading to significant errors in diagnosis and treatment advice [1]. Under the 

influence of these restrictions, deep learning has been integrated into the classification of 

brain tumors, enhancing the accuracy of medical image analysis through convolutional 

neural networks (CNNs) that have demonstrated excellent results in tumor detection and 

classification [2]. Even with the excellent performance, deep learning models require 

very high computational resources which are reserved for high-end workstations and data 

centers. Not only can deploying deep learning models on the edge eliminate the need to 

always have high-bandwidth connectivity, but it also allows making decisions in real-
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time and with low latency, which is important in time-sensitive medical services, 

including brain tumor diagnosis. 

 
Figure 1: Representation of edge computing model can be developed to detect Brain-

tumor. 

Embedded edge computing devices are a new technology, as well as systems such as 

TensorFlow Lite, that allow amazing artificial intelligence to be performed directly on 

battery-powered, palm-sized devices without a data centre or even a decent Wi-Fi 

connection [3]. In this paper, Jetson Orin Nano by NVIDIA[4] is the device that achieves 

MRI-based brain tumor classification on-site and at a very low cost and a very fast rate. 

This study aims to develop and implement a high-performance brain tumor classification 

pipeline optimized using TensorFlow Lite (TensorFlow Lite, 2017) on an edge device, as 

shown in Figure 1. The study will use a combination of GoogLeNet (InceptionV3) [5] 

transfer learning to extract features and apply several machine learning classifiers to 

identify the optimal compromise between the accuracy of the classification, the speed of 

inference, and resource utilization. 

The presented study presupposes designing and implementing a transfer learning-based 

classification pipeline, in which the GoogLeNet (InceptionV3) deep convolutional 

network will be used as a fixed-feature extractor, employing its hierarchical and multi-

scale receptive fields as the means of learning the robust representations to MRI brain 

scans. Selective layers are optimized to such an extent to make pretrained ImageNet 

weights fit the domain-specific properties of medical imaging, which alleviates domain 

shift between natural and MRI image modalities. This is coupled with one of the most 

powerful preprocessing pipelines including intensity normalization, bias field correction, 

and more complex data augmentation, including affine transformations, elastic 

deformations, and contrast-limited adaptive histogram equalization, to maximize feature 

discriminability and better generalization. The framework consists of the comparative 

assessment of various machine learning classifiers to make decisions, the use of Support 

Vector Machines (SVM) with the optimization of kernel functions, K-Nearest Neighbors 

(K-NN) with the dimensionality reduction algorithm (PCA), and an ensemble learner 

(Random Forest, XGBoost, LightGBM, and AdaBoost). Hyperparameter optimization is 

performed by Bayesian search and nested cross-validation to find the maximum 
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classification effectiveness and computational feasibility to be installed on embedded, 

and further evaluation of robustness to inter-patient variability, class imbalance, and 

noise artifacts evaluated. The trained models are converted and optimized and deployed 

using TensorFlow Lite and pruning and post-training quantization strategies (8-bit 

integer, float16 and hybrid) are used to trim memory footprint and computational 

complexity while minimally affecting the accuracy. Delegation to TensorFlow Lite is 

used to make use of the CUDA-enabled architecture of the NVIDIA Jetson Orin Nano, in 

addition to memory bandwidth utilization profiling, kernel execution time, and model 

graph structure to ensure deterministic real-time performance. 

Performance assessment is done on accuracy, latency, and resource usage axis, and is 

assessed through a multi-metric evaluation model comprising accuracy, precision, recall, 

F1-score, ROC-AUC, Matthews Correlation Coefficient (MCC) and inference 

throughput (FPS). Power usage and thermal efficiency of the embedded platform are also 

documented to make sure the embedded system can be reliably used over an extended 

period in clinical practice. Lastly, the trade-off analysis between predictive accuracy and 

real-time responsiveness is carried out and Pareto front analysis is used to plot the 

relationship between classification accuracy and inference latency, to understand the 

effect of optimization methods such as aggressive quantization versus full-precision 

inference on diagnostic reliability, and suggest deployment strategies based on 

application-critical requirements, including ultra-low-latency emergency screening cases 

and cases where diagnostic review cases are more important. To address these 

challenges, this study builds upon edge computing with lightweight deep learning, 

aiming to enable accurate, low-latency brain tumor classification directly on embedded 

devices. 

1.2 Background and Motivation 

Brain tumors, be they benign or malignant, present a great diagnostic challenge due to 

subtle differences in MRI image patterns, inconsistency among individuals, and the 

complicated shapes of the tumor regions. In the planning of treatment, surgical 

intervention, and better survival rates, early and accurate classification is a prerequisite. 

Magnetic Resonance Imaging (MRI) has been the dominant non-invasive technique to 

identify brain tumors, however, the process of manually interpreting it is tedious, has 

inter-observer errors, and it needs expertise in a specialized field.Deep learning has 

reinvented the field of medical imaging analysis, where CNN-based architectures are 

found to achieve the highest results in tumor classification tasks. Nonetheless, the 

implementation of these models in clinical settings, particularly in resource-constrained 

settings, is challenging since it is computationally intensive. Cloud solutions are capable 

of assisting; however, they introduce latency, privacy concerns and depend on a stable 

network infrastructure. Edge computing helps fill this gap, moving AI computations as 

much as possible to the data source, which makes it possible to perform on-devices AI 

computations with minimum latency and improved data privacy. TensorFlow Lite, which 

is a mobile and embedded-oriented library, enables conversion and optimization of deep 

learning models to execute them effectively on a limited hardware. 

This work can be attributed to the necessity to create a cost efficient, portable and real 

time brain tumor classification system, which will not rely on the power of powerful 

servers. In the effort to show that high-performance tumor recognition can be done on 
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small, energy-efficient devices and is thus a reality, this study will optimize the model to 

be used in the Jetson Orin Nano and thereby create the possibility of AI-assisted 

diagnostics in remote or emergency applications. Even though advancements have been 

made in AI-based brain tumor detection, there is an urgent need to bridge a gap of high-

accuracy classification models to be deployed on low-power and embedded edge devices 

to be used in real-time clinical settings. The current strategies tend to rely on cloud-based 

servers, or high-end GPUs, and are not suitable in the circumstances of point-of-care 

diagnostics that might be resource-constrained. Moreover, it is still difficult to achieve an 

accurate-latency-resource-efficiency tradeoff with the deployment of deep learning 

models on the embedded system with a limited number of resources. Thus, there is an 

urgent demand to develop a light, but high-quality brain tumor classification pipeline, 

optimized to work with embedded systems, which would be independent but capable of 

working in real-time and preserving the privacy of patient information. 

1.3 Significance & Scope of Work 

This project is devoted to the creation, optimization, and implementation of a brain tumor 

classification system which is designed to work efficiently on embedded edge devices, 

and the application scope includes the entire AI pipeline, such as image preprocessing 

and deep features extraction on MRI images and the classification model optimization, 

compression, and the evaluation of the real-time inference on the NVIDIA Jetson Orin 

Nano platform. The domain-specific feature extraction of transfer learning with 

GoogLeNet (InceptionV3) is used which uses hierarchical receptive fields to represent 

medical imaging data well and a comparative analysis of six machine learning classifiers 

is performed to identify the best balance between accuracy and latency to implement 

embedded machine learning. The trained models are quantified and pruned using 

TensorFlow Lite to attain lightweight operation without significant loss in accuracy and 

then they are tested on resource-constrained devices in both high-accuracy and ultra-low-

latency settings. Performance is measured in real time operational conditions, where 

inference speed, power consumption and thermal stability are measured in order to make 

sure that the system is reliable under prolonged clinical usage. The importance of the 

work is that it helps to fill the gap between AI-based medical imaging studies and 

practical point-of-care applications without the need to face the constraints of cloud-

reliant deep learning models that create delays, confidentiality issues, and reliance on 

networks. Facilitating full on-device inference allows the proposed system to assist in 

making clinical decisions faster in an emergency or remote setting, protect patient 

privacy by storing data locally, and offer scalable, low-cost diagnostic solutions to areas 

with few computational resources in the end not only the development of medical AI 

research but also the development of deployable and practical healthcare technologies. 

2. Related Works 

Magnetic resonance imaging (MRI) is important in automatic classification of brain 

tumors, diagnosis, treatment planning, and follow-up. Conventional techniques used 

handcrafted items including texture, intensity histograms and shape descriptors, and 

classical classifiers, including SVM and random forest. The methods are limited by the 

challenges in feature engineering and variations in MRI acquisition protocols [6]. 

Convolutional neural networks (CNNs), transformer-based models, and hybrid 

architectures have been the most popular over the last ten years as they learn hierarchical 
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task-specific representations directly on pixel data and multi-sequence MRI inputs (T1, 

T2, FLAIR) and have continuously achieved higher scores on benchmark datasets than 

traditional approaches. [7]. 

In spite of the progress in performance, there are still some domain-related problems. 

First, the variation in the appearance of the tumor (gliomas and metastases; intra-tumoral 

necrosis, edema) causes an imbalance in classes and within-class dispersion, which 

complicates the establishment of strong generalization [8]. Second, large-scale 

supervised training is constrained by low and expensive expert annotations; these label 

shortages have prompted the development of semi-supervised, self-supervised and 

active-learning algorithms to reduce annotation effort [9]. Third, MRI scanners, 

protocols, and artifacts vary across institutions resulting in domain shift and necessitate 

domain adaptation or harmonization methods to implement in the clinical setting [10]. 

Last but not the least, clinical adoption requires not only high accuracy, but 

interpretability, quantifiable uncertainty as well as regulatory approval- actually, none of 

the research prototypes that are currently available can meet all the above criteria [11]. 

Deep learning (DL) has transformed medical image analysis in many tasks, such as 

detection, segmentation, classification, and synthesis [12]. Such architectural trends as: 

(a) encoder-decoder CNNs (U-Net variants) to perform segmentation and pixel-level 

tasks; (b) pre-trained backbones and transfer learning to perform classification when data 

are limited; (c) attention mechanisms and vision transformers (ViTs) to learn long-range 

dependencies; and (d) generative models (GANs, diffusion models) to learn data 

augmentation and modality conversion are present [13]. Self-supervised learning 

progress has been notably significant, which has made it possible to train on unlabeled 

medical images more strongly and consequently achieve better downstream performance 

using fewer annotations [14]. 

The use of evaluation practices has also grown: multi-center datasets, cross-validation 

based on patient-level splits, external validation cohorts, and clinical-task-oriented 

measures (e.g. calibration, clinical utility curves) are becoming more common to better 

predict real-world performance [15]. Nonetheless, problems of reproducibility remain 

because of inconsistent preprocessing, absence of standard splits and underreported 

hyperparameters. As a reaction, the recent literature focuses on reproducible pipelines, 

benchmarks, and reporting uncertainty and failure modes and average accuracy measures 

[16]. 

Performing inference and some data processing on the edge (as on a medical device or 

on-premise accelerator) gives some significant benefits to healthcare applications, 

including reducing the end-to-end latency, reducing bandwidth consumption, avoiding as 

much dependence on the cloud, improving data locality and privacy, and the ability to 

provide real-time feedback in point-of-care scenarios [17]. In such time sensitive 

applications of image guidance such as intraoperative, or bedside triage, latency 

improvements may be clinically significant. Edge deployment can also lower cost of 

operation and services in the less connected environment [18]. 

Edge deployment involves constraints which drive design of algorithms and systems. The 

compression of resource-demanding models (compress, such as compressing, and 

quantizing) to resource-efficient forms, architecture search, and the redesign of pipelines 

(such as cascaded models, early-exit networks) are required by resource constraints 
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(compute, memory, power) [19]. There are real-world robustness problems of edge 

devices, such as thermal throttling, variable runtime loads, and hardware accelerator 

(CPU, GPU, NPU, TPU-lite) heterogeneity [20]. Governance and privacy are also an 

opportunity and a challenge since to have an exposure local data is better but to comply 

with the regulation and privacy requirements, there is a requirement of secure firmware, 

encrypted storage, and safeguarded model update channels. Lastly, edge AI needs to be 

incorporated into clinical workflow through stringent validation, maintainability plans 

(OTA updates, model versioning) and explainable in a manner that clinicians are familiar 

with [21]. 

TensorFlow Lite (TFLite) has become one of the most popular models of running 

TensorFlow on edge devices [22]. Its main characteristics are model conversion, support 

of the various quantization approaches (including post-training quantization, dynamic 

range, float16, and quantization-aware training), hardware acceleration through delegates 

(e.g., NNAPI, GPU, Edge TPU) and a small runtime with a size that can be embedded 

into mobile and embedded systems. With the help of the TFLite workflow, it is possible 

to reduce the memory size of models and speed up their inferences, typically with 

relatively small accuracy losses, when quantization-conscious training and/or prudent 

calibration techniques are used [23]. 

Recent studies note the use of TFLite to perform medical imaging. Vision transformers 

and CNNs have both been effectively quantized and implemented on edge accelerators 

with significantly high performance when quantization-aware training and model tuning 

are used [24]. TFLite supports delegating machines; in the case of GPUs such as the 

TensorRT delegates on NVIDIA Jetson boards, or an Edge TPU such as Google Coral 

devices. In spite of this, the responsiveness and extent of supported operations are largely 

reliant on the model architecture, as well as, the maturity of the delegate. In this vein, the 

final result of finding a tradeoff between accuracy and computational efficiency may 

necessarily involve lightweight backbone architecture, separable convolutions, model 

compression, and TFLite optimization methods [25]. The literature of brain MRI 

classification and segmentation pipeline to embedded hardware (Raspberry Pi, Jetson 

series, Coral accelerators) and even microcontroller-grade hardware is still growing [26]. 

It has been found that (a) small CNN models and backbones trained with transfers can be 

used on low-power modules like Jetson Nano or Orin with inference speeds acceptable to 

directly address clinical and reinforcement learning tasks; (b) quantization and pruning 

can be used to run models on smaller devices like Raspberry Pi, but with a lower 

throughput; and (c) end-to-end systems, including preprocessing, inference, and 

postprocessing, have been implemented to illustrate the viability of clinical and 

reinforcement learning. However, the majority of the published research work is limited 

to proof-of-concept studies, frequently done on retrospective or single-center data. There 

is a weak indication that prospective clinical validation, cross-institution generalizability 

or inclusion in clinical practice. Some of the practical issues brought up in research have 

been reliability of on-device preprocessing, addressing thermal and power constraints 

when operating under prolonged workloads, updating models to curb drift, and 

compliance with regulatory standards of medical devices. Along this line, future 

directions are suggested to include validation of compressed models on multi-center 

heterogeneous datasets, use of federated or split learning to solve data privacy and use of 
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lightweight modules to quantify uncertainties and provide explanations to enhance the 

level of trust in on-device inference. 

 
Figure 2: Proposed edge computing model flow to detect Brain-tumor in the Edge device 

3. Proposed Methodology 

The proposed framework as shown in figure 2 as a phase – 1 of Model development and 

phase 2 of Model deployment for classifying brain tumours and deploying them on 

embedded systems begins with a structural pipeline integrating multi-sequence MRI 

datasets that include T1-weighted, contrast enhanced T1 (T1ce), T2-weighted, and 

FLAIR modalities, which capture complementary MRI slices coming from repositories 

such as figshare for their reliability, variability, and generalization. The datasets, which 

include T1, T2, and FLAIR modalities, undergo meticulous preprocessing which 

comprises skull stripping, bias field correction, intensity normalization, spatial 

registration, and resampling followed by augmentation of elastic deformations and 

rotations, CutMix, etc. These steps serve to harmonize the data across scanners and 

institutions to improve robustness of the model. The preprocessed volumes are then 

piped to Inception V3 (GoogLeNet), the frozen convolutional backbone, for extraction of 

spatial feature embeddings which, after global average pooling, richly captures the local 

tumor as well as the surrounding tumor of the 2,048−dimensional feature vector space. 

The classification phase invokes sophisticated learning algorithms (Support vector 

machines, k−Nearest Neighbors, Random Forest, XGBoost, LightGBM, AdaBoost), with 

comparative metrics showcasing the supremacy of generalization and accuracy of the 

Inception V3 + SVM model over others. 

The models undergo Tensorflow Lite conversion, post-training quantization, and 

integration of quantization-aware hardware delegates (i.e., GPU, NNAPI, Edge TPU) and 

Post Training quantization Chips to enable efficient and real-time inferencing on the 

Edge devices such as Raspberry Pi, NVIDIA Jetson, and Google Coral. This allows the 

models to be deployed outside of a controlled environment. The models, especially the 

tumor classification model, is further refined to be deployed inline as an all-in-one input 

output for MRI based tumor predictions. The model is capable of lightweight inferencing 

on the embedded systems including ultra resource-poor medical devices and delivers 

accurate and valuable predictions. This shows the model possesses real-world and 

clinical application. 

   3.1 Phase 1: Model Development Methodology 
The pipeline begins with the acquisition of multi-sequence brain MRI scans (T1, T1ce, 

T2, and FLAIR), which serve as the raw input for subsequent analysis. These sequences 

undergo a preprocessing stage, including skull stripping, bias-field correction, intensity 

normalization, and spatial alignment, ensuring harmonized and standardized inputs 

across heterogeneous sources. The preprocessed data is then passed through the 

InceptionV3 feature extraction module, which leverages transfer learning from ImageNet 

to produce compact, high-dimensional embeddings that capture both structural and 
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pathological tumor characteristics. These embeddings are subsequently fed into a range 

of machine learning classifiers (SVM, k-NN, Random Forest, XGBoost, LightGBM, 

AdaBoost) for robust decision-making and comparative evaluation. Finally, the 

optimized models are prepared for deployment through TensorFlow Lite conversion and 

quantization, enabling efficient inference with hardware delegate support (GPU, NNAPI, 

Edge TPU) on embedded and low-power edge devices. This flow ensures a practical 

balance between diagnostic accuracy and computational efficiency, bridging the gap 

between advanced deep learning methods and real-time clinical applicability. 

 
Figure 3: Proposed Phase 1- Development model 

Figure 3 illustrates the workflow of Phase 1: Model Development. The process begins 

with the collection of brain tumor datasets, which are then passed into the ML pipeline 

and training phase, where preprocessing, augmentation, and feature extraction take place. 

The resulting features are used to develop the ML model, which integrates InceptionV3 

embeddings with various classifiers. This structured flow ensures that the transition from 

raw MRI inputs to trained ML models is both systematic and optimized for performance, 

setting the foundation for the subsequent deployment phase. 

    3.1.1 Dataset Description 

The main aim of this research is to identify the different types of brain tumors: gliomas, 

meningiomas, and tumors of the sella, which in turn, comprise the most frequently 

encountered intracranial neoplasms in day-to-day clinical practice [27]. These particular 

tumors were selected not only because of their commonness, but also because of the 

significant differences in their biology and patterns of growth: gliomas are diffuse, 

infiltrative, intra-axial tumors of glial origin, meningiomas are most characteristically 

benign, extra-axial tumors of meningeal origin, and pituitary tumors are those which are 

either hormonally active or exert compressive effects and are situated in the sella region. 

Regardless of the differences, they are of immense importance in neuro-oncology where 
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the precise differentiation of the tumors is of paramount importance for the treatment and 

management of the patients. In this study, the author attempts to cover this gap through 

the application of four fundamental Magnetic Resonance Imaging (MRI or nuclear 

magnetic resonance imaging) modalities: T1 weighted imaging (T1), Contrast-Enhanced 

T1 weighted Imaging (T1ce), T2 weighted imaging (T2), and Fluid-attenuated Inversion 

Recovery (FLAIR). Each of the imaging sequences offers different types of information: 

T1 offers excellent resolution of the anatomy, and T1ce shows lesions which vascularize 

in an abnormal way, T2 shows edema and varying consistency of tissues, and FLAIR is 

able to delineate the edge of the tumor by suppressing the signals caused by the 

cerebrospinal fluid. The combined application of the different sequences offers the 

imaging basis necessary to accurately differentiate between glioma, meningioma, and 

tumors of the sella. 

In this work the use of multi-sequence structural brain MRI datasets with the four widely 

used modalities: T1-weighted (T1), contrast-enhanced T1-weighted (T1-Gd or T1ce), 

T2-weighted (T2), and Fluid Attenuated Inversion Recovery (FLAIR). Each of them has 

differential diagnostic value which facilitates a more thorough characterization of tumor 

heterogeneity [23]. In particular, T1-weighted images show the anatomy with very fine 

detail, and T1ce sequences show the lesions associated with tumors exhibiting abnormal 

vascularization and blood–brain barrier breakdown and enhancement. T2 scans and 

FLAIR scans show edema and peritumoral fluid and FLAIR enhances the tumor border 

with cerebrospinal fluid suppression. 

In the interest of retaining uniformity and ease of comparison across investigations, the 

figshare benchmark datasets are used when available. These datasets, created by domain 

professionals, contain multi-institution and multi-scanner MRI datasets and, therefore, 

are representative of the variability of real-world images and ideal for evaluating the 

generalization of a model for different clinical settings. They also provide harmonized 

annotations for the three clinically relevant subregions of the tumor: enhancing tumor 

(ET), tumor core (TC), and whole tumor (WT). Furthermore, the figshare datasets 

provide uniform training, validation, and testing splits with ground truth labels validated 

by neuroradiologists to ensure reproducibility and ease of direct comparison to state-of-

the-art methods. 

    3.1.2 Preprocessing and Data Augmentation 

Skull stripping/brain extraction. To reduce non-brain artifacts and enhance feature 

robustness, crude brain extractions are achieved through modern CNN-based tools (e.g. 

HD-BET, SynthStrip), which surpass conventional maskers within pathological volumes 

of the brain [24]. 

Bias-field correction & intensity standardization. Low-frequency inhomogeneities are 

corrected by N4ITK and followed by intensity standardization by scan/sequence to 

minimize site/scanner drift. We opt for WhiteStripe (normal appearing white matter 

anchor) or z-score normalization within brain masks, both of which are well established 

in neuro-MRI and radiomics. 

Spatial steps. If needed, volumes are affine-registered to a common space, resampled to 

isotropic resolution, and center-cropped/padded to a fixed field-of-view. 2D or 2.5D 

stacked images are created on a per-slice basis based on the model input. 
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Augmentation. To enhance invariance and reduce overfitting, we apply small 

rotations/affine transforms, elastic deformations, flips, intensity jitter, Gaussian noise, 

random erasing, and mixup/CutMix on 2D slices or stacks. Given its strong 

regularization and localization, the inclusion of CutMix is justified. The next step 

involves the extraction of high-level representations from sequences of MRI scans, 

utilizing deep learning architectures after preprocessing and augmentation steps are 

applied. 

    3.1.3 Feature Extraction with GoogLeNet (InceptionV3) 

The use of convolutional neural networks (CNNs) has an overwhelmingly successful in 

the field of feature extraction from medical images, especially in high-dimensional, 

complex datasets like brain MRIs [27]. For this, we use InceptionV3, an improved 

version of GoogLeNet developed for the ImageNet benchmark and large-image 

classification competitive tasks. Its modular factorized convolutions allow for convenient 

representation learning and balance the accuracy-complexity ratio, making the model 

very attractive in medical image computing applications. 

In terms of MRI data classification, we will perform transfer learning on InceptionV3’s 

ImageNet weights and borrow its convolutional layer classifiers on top of its backbone 

for the rich low-and mid-level visual representations it contains on edges, textures, and 

contours. The ridge visual features of the edge classifiers will freeze, and the remaining 

backbone visual classifiers will continue learning. These networks have their last 

classification layer replaced with include top=False, cutting the models' tops and 

preserving their visual backbone for classification. The backbone is then fed with MR 

slices input, either single-sequence or a composite of multi-sequence slices, which in turn 

shrinks their original sizes to the expected visual input sizes of 299 × 299 × 3. The last 

layer of the visual classifiers is also frozen and is a Convolutional layer with Global 

Average Pooling, which reduces the representation to a 2,048-dimensional space. This 

selection is a highly compensated representative of the MRIs, as it contains more 

contextual information as well as the discriminative features. Features such as local 

tumors and contextual information will be more pronounced for the subsequent machine 

learning classifiers. InceptionV3 has a robust mechanism for multi-scale feature 

extraction, which is one of its strongest points. The network’s ability to capture features 

at different spatial scales is the result of filtering parallel convolving with different 

receptive fields (1×1, 3×3, 5×5) of the Inception modules. This is very useful for brain 

tumor imaging, as lesions vary greatly in size, shape, and texture. Factorized 

convolutions, such as substituting a 5×5 convolution with 3×3 stacked 3×3 or 3×1 & 

1×3, greatly cut down the cost of computation while still retaining representational 

power. Added to this, the auxiliary classifiers provide a structure for deep supervision for 

the training phase, which helps alleviate the vanishing gradient problem and stabilize 

convergence. In compliance with the InceptionV3 training distribution, the MRIs are 

normalized as per the same preprocessing methodology employed for the ImageNet-

trained models. The Polarized set has its input features scaled to the set range of [-1, 1] or 

is standardized by the mean, at which the dataset is divided by its standard deviation, as 

is the case in the more contemporary deep learning frameworks, Keras and TensorFlow. 

This is to minimize the transfer performance cost which is caused by the distribution shift 
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between the pre-training phase which is comprised of natural photos, and the fine-tuning 

phase, which contains medical images. 

Through the integration of InceptionV3's architectural prowess in feature extraction and 

multi-sequence MRI inputs (T1, T1ce, T2, FLAIR), the framework captures the 

anatomical, structural, and pathological facets of a tumor in a complementary manner. 

These advanced feature embeddings offer powerful, agnostic representations that 

classical machine learning classifiers (SVM, Random Forest, XGBoost, etc.) can 

leverage, maintaining a balance of domain conformity and interpretability for 

downstream analyses and predictive modelling. 

     3.1.4 Classifier Models 

In a multi-class scenario, once the hyper-features are derived, head embeddings from the 

InceptionV3 architecture will allow the use of the high-dimensional features with a set of 

machine learning models to classify and robustly and accurately detect brain tumors. In 

addition, alongside deep features, traditional classifiers are explored due to the fact that 

this hybrid model approach with deep learning models tends to improve performance 

generalization in medical image tasks, especially with small or diverse datasets.  Support 

Vector Machines, or SVMs, are a good candidate due to their ability to formulate high-

margin decision boundaries, and the use of some non-linear kernels such as the radial 

basis function (RBF)  which capture the non-linear and overlapping distributions of 

tumor and non-tumor tissues. With KNN, or k-Nearest Neighbors, classifiers are offered 

an easier way to classify cases by using local approximate features of the entire feature 

space, which grants some insight into class separation the embeddings provide, but this 

does slow down overall processing. Random Forest classifiers are also a good addition, 

as the ensemble of decision trees with the use of bootstrap aggregating also reduces the 

chance of overfitting by capturing the non-linear relationships and still over the class 

imbalance, which is a common issue in datasets that have a large volume of some tumor 

subtypes. XGBoost also does overfitting as a gradient booster for some of the files that 

capture the difficult-to-classify files by providing less regression, with more emphasis on 

exposing some, which tends to be more XGBoost sensitive. Intended for high-

dimensional data, LightGBM uses a histogram-oriented approach with a leaf-wise 

growth paradigm that saves accuracy and speed, along with memory utilization, which 

helps with the embeddings at scale, such as InceptionV3’s 2,048-dimensional feature 

vectors. Lastly, AdaBoost concentrates on the problem of adaptively reweighting the 

misclassified samples, such as infiltrative boundaries and necrotic regions, more during 

the next iterations to improve sensitivity and reduce the false-negative rate—which is 

important for clinical diagnosis. 

   3.1.5 Integration & Model development 

Each classifier was trained in a single InceptionV3 feature space classifier irrespective of 

separated hyperparameter tuning through systematic grid search and stratified cross-

validation to avoid bias and ensure fairness in evaluation. This made it possible to focus 

not only on classifier performance but also on the balance scribed among accuracy, 

computation, and generalisation. These factors extended beyond single classifier 

performance, moving to ensemble-level strategies, including majority voting and 

weighted aggregation, to exploit model-level complementary boosting and model-level 

redundancy reduction for further variance prediction reduction. 
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After the InceptionV3 network extracts high-level feature embeddings, they are 

combined with trained machine learning classifiers for robust brain tumor classification. 

While deep neural networks capture features hierarchically, generalization improves 

when deep networks are paired with classical classifiers, especially in medical imaging 

applications with scarce data. For tumor detection, multiple classifiers are tested, 

including Support Vector Machine (SVM), k-Nearest Neighbors (KNN), Random Forest 

(RF), XGBoost, LightGBM, and AdaBoost, to find the optimal decision-making 

classifier. 

In order to provide a fair comparison, all classifiers were trained on the same feature 

space, derived from InceptionV3. Hyperparameters were systematically tuned using grid 

search and stratified cross-validation, ensuring the retention of class balance and tumor 

subtype representation. In this case, the strongest classifier was found to be the 

InceptionV3 + SVM composite model. Using InceptionV3 (from the GoogLeNet family), 

which acts as a frozen feature extractor (to mitigate the overfitting concern for small 

datasets), combined with the SVM to construct high-margin decision boundaries, yielded 

superior results. In this case, the SVM classifier's cubic decision boundaries yielded 

superior results when using the RBF kernel, as it models the non-linearities associated 

with tumor variability better than a linear or polynomial kernel. 

The SVM hyperparametric optimization focused on tuning the balancing parameter C 

and kernel width γ (gamma) through exhaustive grid search on stratified folds. The 

validation results provided the basis for the selection of the final parameters, which 

enabled strong generalization on previously unseen MRI scans for validation. In 

comparative experiments against traditional CNN approaches—such as the fine-tuned 

InceptionV3 and InceptionV3 with softmax— the combination of InceptionV3 with 

SVM consistently showed the best performance on the metrics of accuracy, recall, and 

F1-score. This scenario is the most critical in clinical settings where the cost of false 

negatives is very high, making the surrounding performance of the model extremely 

valuable. Lastly, strategies at the ensemble level like majority voting and weighted 

aggregation which aimed at further enhancing model robustness were also investigated. 

Despite this, the accuracy, generalization, and clinical trustworthiness of the hybrid 

InceptionV3 + SVM pipeline were the most balanced, confirming the reliability of the 

method in brain tumor classification. Out of the entire set of trained models, the 

InceptionV3 + SVM hybrid stood out for having the best recall and F1-score making it 

the best classifier. Still, the comprehensive evaluation showed all models, whether 

margin-based SVM, distance-based KNN, tree-based RF, or boosting models (XGBoost, 

LightGBM, AdaBoost), brought independent interpretations of the feature separability 

classification problem and thus valuable diversity in the situation. 
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3.2 Phase 2: Edge Deployment Methodology 

 
Figure 4: Proposed methodology of Phase 2 

The next stage, as illustrated in Figure 4, focuses on the implementation of all optimally 

trained classifiers on edge-computing systems based on Phase-1 results for real-time 

inference deployment in resource-constrained edge environments. Rather than narrowing 

down on the best performing model (InceptionV3 + SVM), this phase examines 

deployment for all candidate classifiers—SVM, k-Nearest Neighbors (KNN), Random 

Forest (RF), XGBoost, LightGBM, and AdaBoost—thus enabling a training performance 

vs. deployment performance analysis. 

In the last phase of this research, the aim is to achieve real-time classification of brain 

tumors at the point of care by deploying the modified deep learning classifiers on the 

embedded device NVIDIA Jetson Orin Nano. All the classifiers built during the training 

phase (InceptionV3 + SVM, KNN, RF, XGBoost, LightGBM, and AdaBoost) will be 

converted to TFLite format for more portable deployment on embedded systems. A 

model’s post-training quantization (over flexible ranges, float16, or full integer 

quantization) and TFLite’s model compression during export also minimizes the 

operational burden on the device. The design architecture is hybrid, with the hardware 

elements consisting of the Jetson Orin Nano with GPU, CUDA, and TensorRT for 

TFLite model computation, and the software system, optimized for real-time, low-

latency, low-bitrate throughput and memory use, stored locally on the device. Gap and 

Streamline use the operational delegates, GPU, and TensorRT, to increase model 

operational throughput by lowering the available upper bound system capacity. 

    3.2.1 Jetson Orin Nano Architecture Overview 

The next generation AI NVIDIA Jetson Orin Nano edge device focuses on having an 

energy-efficient deep learning inference which makes it suitable for tumors that use MRI 

scans for detection. This value, along with his next-gen AI capabilities, makes it an 

excellent MRI-based tumor analysis tool. Each device is equipped with an Ampere GPU 

by NVIDIA, which has CUDA cores for tensor operations acceleration and real-time 

inference through Deep Learning Accelerators, and an ARM Cortex A78 AE CPU 

cluster for the organization. The MRI inputs and the I/O interfaces like USB, PCIe, and 

camera that are extremely easy with the imaging systems are all efficiently supported by 

the unified LPDD5 subsystem memory. The Orin Nano, powered by the NVIDIA 

JetPack SDK, which has CUDA, tensorRT, cuDNN, and optimized TensorFlow Lite 

SDK, has the best performance-to-power ratio in comparison to traditional GPU servers. 

This enables the device to be used in portable and bedside clinical settings. The 

configuration used in the proposed work is depicted in Table 3.1. 

 

 

Component Specification / Description 
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Component Specification / Description 

Device 
NVIDIA Jetson Orin Nano Developer Kit (module + carrier board, 

active cooling) 

Memory & 

Storage 

16 GB LPDDR5 RAM; 128 GB NVMe SSD for datasets, models, and 

runtime libraries 

Operating 

System 
Ubuntu 20.04 LTS with NVIDIA JetPack (v5.x) 

Frameworks 
TensorFlow (training), TensorFlow Lite (deployment), PyTorch 

(experimentation) 

Acceleration 
TensorRT (FP16/INT8 optimization), CUDA/cuDNN, DLAs, Ampere 

GPU with CUDA cores 

Libraries OpenCV (MRI preprocessing), NumPy/SciPy (numerical ops) 

Monitoring 

Tools 

tegrastats (GPU/CPU/memory usage), Nsight Systems (bottleneck 

analysis), custom logging pipelines 

Use Case 
Efficient deployment of InceptionV3 + SVM and other classifiers for 

MRI-based tumor detection 

 

Table 3.1: Hardware & Software setup 

   3.2.1 Deployment Pipeline on Jetson Orin Nano 

The deployment pipeline bridges the gap between model development in high-

performance cloud/GPU environments and real-time inference on embedded hardware. 

The process is divided into three stages: model transfer, inference execution, and 

performance monitoring. 

  3.2.1.1 Model Transfer 

Upon completion of optimizing hyperparameters and quantization of the model after 

training, the model is then formatted to the TensorFlow Lite format (quantized .tflite). 

This is done to maintain compatibility with lightweight inference engines on embedded 

devices. The deployment is done as a reproducible and modular pipeline with three main 

components: model packaging, secure transfer, and environment synchronization. 

Model Packaging: For the purpose of deployment, creation of a stand-alone package is 

created, which contains all the components used during inference. This includes the 

quantized `.tflite` model, which is optimized for low-latency execution, as well as the 

ultrasound preprocessing tools (Python scripts or compiled binaries), which do the 

normalization, resizing, and modality fusion to the training distribution. Moreover, the 

label encoders, which map the output of the classifier to clinically understandable labels 

(for instance, glioma, meningioma, and pituitary), is included. Along with the encoders 

are the configuration and metadata files that contain the model properties such as the 

architecture, quantization, and other parameters, which are used during the model 

deployment for model traceability. This modular packaging ensures that future updates, 

which may include changing the preprocessing algorithms (improved) as well as model 

re-training, will still maintain the deployment pipeline. 

Secure Transfer: After the files are packaged, numerous protocols can be used to transfer 

the files to the Jetson Orin Nano. In development environments, Secure Copy Protocol 
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(SCP) over SSH is used from a workstation or cloud server. For high throughput or large 

datasets, faster read/write access as well as storage persistence is provided by the NVMe 

SSD mounted directly on the Jetson board. In addition, mounted Docker volumes are 

used in containerized deployments to allow model packages to be used in prebuilt 

inference containers without duplication of files. These methods, along with the rest, 

preserve the security, integrity, and flexible deployment options of the data in various 

environments. 

Environment Synchronization: Discrepancies between training and inference 

environments are minimized by synchronizing the runtime dependencies with the 

development configuration. Two strategies are primarily employed, as described below: 

Inference environments are made to reduce dependency mismatches by using Docker-

based containers preloaded with TensorFlow Lite runtime, TR Tensor libraries, as well as 

supporting packages like CUDA and cuDNN drivers, OpenCV, and NumPy. 

Lightweight deployment scenarios on the Jetson Nano are done by using Python virtual 

environments where library versions of the TensorFlow Lite runtime, classifiers made by 

scikit-learn, and ONNX runtime delegates are managed by the pip or conda package 

managers. Version control deployment is possible due to guarantees that models maintain 

reproducibility across devices and scalability across multiple edge units in a clinical 

network.   This deployment pipeline is built around the primary modules to support 

CI/CD due to integration of packaging, secure transfer, and synchronization of disparate 

environments. Such an architecture improves the speed at which renewed or new models 

become available, while also ensuring that clinical and research workflows, which are 

sensitive to usage interruptions and inconsistencies, receive the uninterrupted and 

dependable service they demand. 

    3.2.1.2 Running Inference and Monitoring Performance 

The trained models turn Jetson Orin Nano deployment into real-time inference services 

as edge computation streams them into processing pipelines. Processes mapping the 

estimation step that begin with data and end with its classification are stepwise optimized 

for the capabilities of embedded hardware.  Once the system receives the MRI 

volumetric data in the form of sequences, parts are T1, T1ce, T2, and FLAIR slices and 

undergo reformative sequences which use OpenCV and NumPy to change size 

appropriate for InceptionV3 (299 × 299 × 3). Such as correction of intensity bias, cross-

correction process, and matrix fusion, which are all done. Distributional gaps, which are 

discovered in the inference and training models, are avoided seamlessly, along with the 

feature dissimilarity during training and model. Once the system receives the MRI 

volumetric data in the form of sequences, parts are T1, T1ce, T2, and FLAIR slices and 

undergo reformative sequences which use OpenCV and NumPy to change size 

appropriate for InceptionV3 (299 × 299 × 3). Such as correction of intensity bias, cross-

correction process, and matrix fusion, which are all done. Distributional gaps, which are 

discovered in the inference and training models, are avoided seamlessly, along with the 

feature dissimilarity during training and model 

Classification: The feature vectors are computed and sent to the classifiers - SVM, KNN, 

RF, XGBoost, LightGBM, or AdaBoost - which are performed as TensorFlow Lite 

delegates or run via ONNX engine acceleration depending on the model type. This 

modular design classifier allows classification side-by-side benchmarking of different 
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algorithms in the same diagnosis environment, providing insight into accuracy, latency, 

and resource utilization. 

Quantized Inference: Inference has additionally been correlated with execution quantized 

graph inference. This is achieved by implementing FP16 and INT8 quantization via 

TensorRT delegates, which enables the models to trade bandwidth and latency. 

Benchmark results quantization and accuracy are inversely correlated with model 

decrease of 70 - 80% and with throughput for near real-time clinical workflows. 

Performance Monitoring Workloads with sustained periods of time require constant 

monitoring to ensure there is stability. The tegrastats utility, for instance, can provide in 

real time CPU and GPU used within the approximation time, the memory type used, and 

the thermal conditions of the memory. Custom logging modules capture the amount of 

time taken to make inferences and record the classification for further analysis alongside 

clinical audit trails. Through systematically optimizing preprocessing, performing 

quantized inference, and applying structured monitoring of individual steps of the 

pipeline, MRI-based brain tumor classification models achieve optimum latency, energy 

usage, and diagnostic performance level. Such a design is necessary to convert machine 

learning research into actual machine learning research applied in the field. 

4. Experimental Setup & Analysis of Phase I 

To secure both the effectiveness of the classification models and their practicality on 

embedded edge devices, the experimental configuration consisted of two complementary 

phases. 

In the first phase, the development of models took place in a high-compute setting 

utilizing Google Colab with GPU acceleration. This stage involved training and fine-

tuning models built on InceptionV3 transfer learning, along with a variety of machine 

learning classifiers. Before hardware considerations, the aim was to secure high levels of 

accuracy, robustness, and generalization on the brain tumor MRI datasets. This was 

fundamental to phase 1. 

Following this, the second phase of Edge Deployment focused on the real-world 

application of the trained models via deployment on the NVIDIA Jetson Orin Nano 

platform. Here, the emphasis shifted from accuracy to a comprehensive set of parameters 

which included inference latency, throughput, memory footprint, power consumption, 

and thermal stability. This phase also tested the models in resource-constrained 

environments to demonstrate the real-world feasibility of AI-assisted tumor classification 

for point-of-care use. In evaluating the proposed framework, these two phases provided a 

complete picture: phase 1 delivered the technical and algorithmic justification for the 

approach, and phase 2 delivered evidence of its real-world practicality. 

   4.1 Data Preprocessing and Augmentation 

In order to enhance the consistency of the heterogeneous sources of MRI scans and to 

refine the robustness of the classification framework, extensive preprocessing and 

augmentation techniques were incorporated before initiating the training. Initially, the 

raw brain MRI scans received from Figshare and Harvard were grayscale and of 512 × 

512 pixel resolution [27]. These were then resized to 224 × 224 × 3 as required by the 

InceptionV3 backbone, in which the grayscale channel was copied thrice to RGB-ify the 

input. 
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Normalization through min-max scaling was carried out to mitigate inter-patient and 

inter-scanner variability by scaling pixel intensity values into the 0-1 range. In addition, 

bias-field correction was performed to mitigate low-frequency intensity inhomogeneities, 

which are often present in MRI scans. For intra-patient and inter-sequence MRI spatial 

alignment, affine registration in combination with center cropping and padding was 

performed. 

To enhance generalizability and mitigate overfitting, diverse augmentation strategies 

were employed, which included geometric transformations (rotations, elastic 

deformations, affine transformations, and flips), intensity modifications (contrast-limited 

adaptive histogram equalization, Gaussian noise injection, and intensity jitter), as well as 

mixing (CutMix, random erasing, and MixUp). These augmentation techniques 

replicated potential clinical variabilities, such as MRI scanner settings, patient 

positioning, and tumor morphology. The pre-processing and augmentation pipeline 

designed allowed the dataset to maintain biological relevance and diversity, so that the 

models learned discriminative features of the tumor and were robust to noise, artifacts, 

and imbalance in the dataset. The complete preprocessing and augmentation pipeline is 

summarized in  

Table 4.1. 

Step Description 

Resizing 
Images resized from 512 × 512 (grayscale) → 224 × 224 × 3 

(RGB channels). 

Normalization Min–max scaling applied to pixel values (range [0, 1]). 

Bias-field correction 
N4ITK-based correction to reduce scanner intensity 

inhomogeneities. 

Spatial harmonization 
Affine registration and cropping/padding for alignment across 

scans. 

Geometric 

augmentations 

Small rotations, flips, elastic deformations, affine 

transformations. 

Intensity 

augmentations 

CLAHE (contrast-limited histogram equalization), jitter, 

Gaussian noise. 

Mixing techniques 
Random erasing, CutMix, and MixUp to simulate variability 

and reduce bias. 

 

Table 4.1 – Preprocessing and Augmentation Pipeline 

    4.2 Model Initialization, Architecture, and Training Configuration 

The foundation of the proposed framework is based on InceptionV3, which has been pre-

trained on the ImageNet dataset and accessed through the Keras Applications repository. 

The top classification layers of the model were also removed to allow the network to act 

as a feature extractor for brain MRIs, where the last convolution block produced 2048 

feature vectors. The vectors were sent to a lightweight classification head that included a 

Global Average Pooling (GAP) layer for dimensionality reduction, a 1024-neuron Dense 

layer with ReLU activation for learning tumor-specific discriminative feature, a Dropout 

layer (rate = 0.5) for regularization, and a final Dense layer with three softmax activated 
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neurons for classification glioma, meningioma, and pituitary tumors and for 

classification. This resulted in 23.9 million parameters, of which 2.1 million were 

trainable (for newly added layers) and 21.8 million were the frozen InceptionV3 

backbone parameters. This means the model utilized pre-trained visual representations 

while being computationally efficient for transfer learning. Training was performed using 

5-fold cross-validation at the patient-level, which ensured that there was no patient 

overlap between training and validation folds on the CE-MRI Figshare dataset. 

The Adam optimizer was set to a learning rate of 0.0001, and the learning task employed 

the categorical cross-entropy loss function. Each training session was conducted using a 

batch size of 32 for a maximum of 30 epochs, which included early-stopping criteria to 

minimize overfitting. During training, variability and training set robustness were 

attained through the dynamic application of the augmentation procedures outlined in Step 

1. Class imbalance was managed through the implementation of stratified batch 

sampling. The integrated model structure and training setup are presented in Table 4.2. 

Component / Parameter 
Output Shape / 

Value 
Param # Status / Description 

InceptionV3 (frozen) (None, 5, 5, 2048) 21,802,784 
Non-trainable backbone 

initialized with ImageNet 

GlobalAveragePooling2D (None, 2048) 0 
Reduces convolutional feature 

maps 

Dense (1024, ReLU) (None, 1024) 2,098,176 Trainable fully connected layer 

Dropout (0.5) (None, 1024) 0 
Regularization to reduce 

overfitting 

Dense (3, Softmax) (None, 3) 3,075 
Outputs probabilities for glioma, 

meningioma, pituitary 

Total Parameters – 23,904,035 
2,101,251 trainable; 21,802,784 

frozen 

Optimizer Adam – Learning rate = 0.0001 

Loss Function 
Categorical Cross-

Entropy 
– Multi-class classification 

Batch Size 32 – Used during training 

Epochs 20–30 – 
Early stopping based on 

validation loss 

Validation Strategy 
5-fold cross-

validation 
– 

Patient-level split to avoid data 

leakage 

Regularization 
Dropout, Early 

Stopping 
– Prevents overfitting 

Augmentation 
Geometric, 

intensity, mixing 
– Improves generalization 

Table 4.2 – Model Architecture and Training Configuration 

 

   4.3 Model Evaluation and Performance Metrics 
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For the evaluation of the Phase 1 models, both quantitative and qualitative methods were 

used. Although the overall performance of the classifiers can be summarized using scalar 

metrics like accuracy, precision, recall, and the F1-score, confusion matrices and ROC 

curves provide additional insights on the performance of each classifier on the individual 

classes and reveal possible patterns of misclassification. This misclassification is of 

special concern in the case of medical imaging since the cost of a false negative can be 

very high. 

The confusion matrices for each of the classifiers used in Phase 1: GoogLeNet 

(InceptionV3) with SVM, K-NN, Random Forest, XGBoost, LightGBM, and AdaBoost, 

are presented in Figures 4.1–4.6. Each matrix shows the distribution of true vs. predicted 

labels for the three classes of tumors (glioma, meningioma, and pituitary). 

 
Figure 5: GoogLeNet + SVM Confusion Matrix 

This model produced the cleanest separation across classes. Out of 293 glioma cases, 282 

were classified correctly, with only 11 misclassifications. Meningioma achieved 115 

correct predictions out of 143, with minor confusion against glioma and pituitary. 

Pituitary tumors were almost perfectly classified, with 169 correct out of 177. This 

matrix demonstrates the robust generalization of the SVM classifier, particularly for 

glioma and pituitary tumors.as shown in figure 5. 
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Figure 5: GoogLeNet + K-NN Confusion Matrix 

K-NN classifier also showed great results for glioma (293 - 283) and pituitary tumors 

(177 - 170), but had a harder time with meningioma where 36 were misclassified and 36 

were misclassified as glioma and 13 as pituitary. This exaggerates the K-NN proximity 

problem where overlapping feature distributions, as seen between glioma and 

meningioma, becomes problematic as shown in figure 5. 

 
Figure 6: GoogLeNet + Random Forest Confusion Matrix 

For Random Forest, 277 out 293 for glioma and 170 out 177 for pituitary tumors is great 

but misclassifying a large portion of meningiomas, only 68 out of 143, is concerning. 

Specifically, 48 meningioma were misclassified as glioma and 27 as pituitary. This 

illustrates how although Random Forests are proven as strong general-purpose 

classifiers, they also show ill effects of unbalanced medical data as shown in figure 6. 
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Figure 7: GoogLeNet + XGBoost Confusion Matrix 

XGBoost achieved 280 correct predictions for glioma and 170 for pituitary but showed 

strong confusion for meningioma with only 94 correct out of 143. The classifier 

misclassifying meningioma, more specifically, 26 cases as glioma and 23 cases as 

pituitary, indicates even with strong overall abilities, XGBoost still has a problem with 

tumors with intermediate morphological features as shown in figure 7 

 
Figure 8: GoogLeNet + LightGBM Confusion Matrix 

LightGBM performed similarly to XGBoost, though it was slightly better at classifying 

meningioma cases (96 correctly identified). Glioma and pituitary cases were also 

predicted correctly and consistently (281 and 172, respectively). These results indicate 

that models based on boosting algorithms possess reasonably balanced performance, 

though they are not able to completely resolve the overlap problem between glioma and 

meningioma, as shown in Figure 8. 
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Figure 9: GoogLeNet + AdaBoost Confusion Matrix 

AdaBoost was the least competent compared to the other classifiers, though it performed 

reasonably on glioma (245/293 correctly classified) and pituitary cases (159/177), the 

meningioma classification contained more erroneous predictions. This illustrates the 

inability of AdaBoost to approximate the complex, non-linear decision boundaries in the 

tumor data compared to SVM and the other gradient boosting methods as shown in figure 

9. 

The Confusion Matrices clearly showed SVM achieved the most consistent performance, 

with boosting-based approaches providing the strongest alternative. In contrast, K-NN, 

Random Forest, and AdaBoost demonstrated the least adequate performance, with a 

higher error rate on meningioma and thus, a higher error rate overall. 

To assess class separability beyond scalar metrics, Receiver Operating Characteristic 

(ROC) curves were constructed using a one-versus-rest approach (Figure 10). This gives 

an appreciation of the relationship between sensitivity (true positive rate) and specificity 

(1 – false positive rate). The trade-off between these two metrics offers a more 

comprehensive indication of the diagnostic accuracy of a model than any one of the 

metrics could offer in isolation. The results showed that the model exhibited excellent 

discriminative power for all tumor types. Glioma (Class 0) achieved an AUC of 0.98, 

underscoring the model's ability to accurately and reliably distinguish gliomas from all 

other tumor classes. Meningioma (Class 1) recorded an AUC of 0.93, which, although 

lower due to overlapping visual features with glioma, still qualifies for clinically reliable 

decision-making owing to its proximity to the 0.95 threshold. Pituitary tumors (Class 2) 

recorded an AUC of 0.99, indicative of near-perfect separability, consistent with the 

near-ideal classification of results illustrated in the confusion matrices. Strong model 

performance was also confirmed by the macro-averaged AUC of 0.967 and micro-

averaged AUC of 0.972. This finding confirms that the models established robust and 

balanced classification across all tumor types. This, together with the model's overall 

accuracy, demonstrates that its clinical diagnostic reliability across individual tumor 

classes is strong, which is a necessary requirement for clinical use. 
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Figure10: ROC curve of the proposed model 

   4.4 Performance Metrics 

Besides ROC–AUC curves and confusion matrices, other quantitative evaluations per 

model included precision, recall, F1-score, and ROC–AUC. All metrics together provide 

a complete assessment of the model's classification ability. Here, precision refers to the 

proportion of predictive positives that are true; recall refers to the model's ability to 

recover true cases; the F1-score provides a composite value of precision and recall, while 

the value of the ROC–AUC is the distance between the model's predicted probabilities. 

Table 4.5 provides a summary of the results.  GoogLeNet + SVM, overall, performed 

best with a precision of 0.9223, recall of 0.9233, F1-score of 0.9222, and ROC–AUC of 

0.9835 as shown in Table 4.3. His results attest to the model's calibrated performance, 

robustly confirming the visual and scalar assessments' consistency. The MLP classifier 

also did very well, and with a precision of 0.9055 and ROC–AUC of 0.9833, ranked 

closely to the MLP classifier as well. The other gradient boosting methods, XGBoost and 

LightGBM, performed well also, achieving ROC–AUC scores very close to 0.98. In 

contrast, Random Forest and especially AdaBoost demonstrated the least predictive 

performance, as confirmed by the confusion matrices. 

In summary, Phase 1 confirmed that the proposed framework achieves high levels of 

diagnostic accuracy, robustness, and reliability. Transfer learning with InceptionV3 

proved effective, providing rich feature embeddings that advanced classifiers could 

leverage. Notably, the models performed at a clinical level, achieving AUC metrics far 

exceeding 0.90, which is the gold standard for clinical decision-making support. 

Developed Model Precision Recall F1-Score ROC–AUC 

GoogLeNet + SVM 0.9223 0.9233 0.9222 0.9835 
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Developed Model Precision Recall F1-Score ROC–AUC 

GoogLeNet + MLP 0.9055 0.9070 0.9049 0.9833 

GoogLeNet + XGBoost 0.8843 0.8874 0.8828 0.9797 

GoogLeNet + LightGBM 0.8942 0.8956 0.8910 0.9794 

GoogLeNet + Softmax 0.8780 0.8809 0.8769 0.9705 

GoogLeNet + K-NN 0.8924 0.8923 0.8873 0.9621 

GoogLeNet + Random Forest 0.8357 0.8401 0.8260 0.9586 

GoogLeNet + AdaBoost 0.8155 0.8108 0.8128 0.9124 

 

Table 4.3  – Performance Metrics for Phase 1 Models 

Nevertheless, the advanced algorithms demonstrated in Phase 1, while working in a high-

compute environment (Google Colab with GPU Pro support), are not the complete story 

for real-world applications. Inaccuracy-tolerable clinical and emergency use cases also 

impose stringent requirements on latency, throughput, power budget, and thermal 

stability. Consider a model with 97% accuracy that takes a few seconds to analyse a 

single slice in an MRI; it is of no use for real-time decision-making support in emergency 

rooms or neurosurgery. Thermal and power constraints on onboard low-power equipment 

to support models in field testing in clinical contexts are also critical for portable, 

resource-constrained environments. 

The importance of this drives the need for Phase 2: Edge Deployment Analysis, whereby 

the models were deployed on the NVIDIA Jetson Orin Nano. The aim of Phase 2 

included assessing the benchmarking of predictive performance, capabilities of real-time 

inference, and efficient use of resources. Inference latency, frames per second (FPS), and 

estimates of CPU/GPU use, power drawn, and device temperature were recorded to 

validate the performance in healthcare surrounding the framework's reliability. 

5. Experimental Setup & Analysis of Phase II. 

After validating the classification framework in Phase 1, the subsequent phase focused 

on assessing the practical applicability of the framework in clinical practice. This 

involved deploying the trained models on an embedded edge device, specifically the 

NVIDIA Jetson Orin Nano Developer Kit. This device was chosen for its optimal blend 

of adequate processing power, low power requirements, and easy transport, traits that 

render it useful in spaces devoid of high-power computing resources. For this project, the 

Jetson was integrated with a camera for the real-time capturing of brain MRI scans, and a 

portable screen was attached for on-device visualization of the model predictions. Such 

integration of hardware and software is aimed at mimicking point-of-care diagnostic 

scenarios, whereby practitioners obtain immediate and dependable MRI predictions to 
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assist in clinical evaluations, surgical procedures, and emergency interventions. This 

edge configuration is enhanced with real-time, low-latency predictions and reduced 

reliance on external data streams, thus addressing critical elements of medical data 

privacy. 

    5.1 Hardware & GUI setup 

Phase 2 deployment workflow consisted of four key stages, allowing seamless edge-

based inference. First, the best performing Phase 1 models (SVM, MLP, XGBoost, and 

LightGBM) were exported and converted to TensorFlow Lite (.tflite) format, optimized 

through post-training quantization (FP16/INT8) and pruning to decrease model size and 

maintain accuracy, and efficiently transferred to the Jetson Orin Nano for execution. 

Second, Jetson interfacing and on-device preprocessing of OpenCV of brain MRI slices 

(resizing to 224×224 pixels, normalization, and channel replication) were used for 

preprocessing the images. Third, the quantized models were permitted real-time 

execution on the Jetson, visualizing the predictions through a lightweight GUI in the 

Python (PyQt/GTK) ecosystem. 

   
Figure 11 (a) Top view of the hardware 

module 

Figure 11 (b) Side view of the hardware 

module 

 

Figure 11a and Figure 11 b provide a basic overview of the hardware setup, which 

includes a Jetson Orin Nano, a camera, and a display. Then, in Figure 12a and Figure 12 

b are snapshots of the GUI in operation displayed. This shows the framework moving 

from laboratory development to a complete real-time diagnostic assistant embedded 

hardware system. 

  
Figure 12 (a) GUI framework of the Edge 

model  

Figure 12 (b) GUI framework of all 

algorithms 

 

This GUI consolidated input MRI slices, the predicted class of the tumor (glioma, 

meningioma, pituitary), and confidence levels, while presenting a system monitor that 
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summarized metrics of device/jetson use, power, temperature, and a passive view of the 

predicted class. Predictions were displayed on the Jetson for instantaneous results to 

clinicians at the point of care. 

     5.2 Results and Analysis 

To assess how efficient this framework is in embedded situations, the adjusted 

benchmarks are set within the embedded scope using the NVIDIA Jetson Orin Nano, 

looking at latency, power, and temperature variations within a set period, and thermal 

output in relation to the throughputs of Frames Per Second (FPS). These guarantees that 

the embedded system in Jetson Nano has the demanded accuracy as confirmed in the 

First Phase, and checks meets the embedded system in predictive clinical intervention 

use meets all practical requirements in real time. 

Model 
Latency 

(ms) 

Throughput 

(FPS) 

Power 

(W) 

Temp 

(°C) 

GoogLeNet + SVM 42 24 7.8 56 

GoogLeNet + MLP 45 22 8.1 57 

GoogLeNet + XGBoost 55 18 10.2 61 

GoogLeNet + LightGBM 60 16 10.8 62 

GoogLeNet + Softmax 48 21 8.5 58 

GoogLeNet + K-NN 62 15 9.8 60 

GoogLeNet + Random 

Forest 
70 13 12.3 64 

GoogLeNet + AdaBoost 85 12 12.7 65 

 

Table 5.1 Phase 2 Edge Deployment Performance (Jetson Orin Nano) 

In Table 5.1, the system embeds and shows all metrics demanded and needed for this 

configuration to work.  Figure 13 shows latency, Figure 14 shows overall system 

throughput, Figure 15 shows power used, while  Figure 16 shows the system temperature 

profile. Together this speaks to all the classifiers’ predictive power in relation to 

hardware efficiency. 
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Figure 13 Inference latency of classifiers 

on Jetson Orin Nano, showing SVM and 

MLP as the fastest models 

 

Figure 14: Throughput (FPS) comparison, 

with SVM and MLP maintaining real-time 

performance. 

 

. 

 

  
Figure 15: Power consumption during 

inference, highlighting SVM and MLP as the 

most energy-efficient 

 

 

Figure 16: Operating temperature of 

classifiers, with SVM and MLP maintaining 

stable thermal profiles 
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Of all the systems engineered, GoogLeNet + SVM has the least average lag of 

42ms/image which is approximately 24 Frames Per Second, uses power within the range 

of 7.8 Watts, and has a temperature of 56 Degrees Celsius which is within a normal range 

for processing systems. I have also confirmed the engineering of GoogLeNet + MLP, to 

which I have put the same systems in Mn for it to obtain comparable results. On the other 

hand, Boost based algo systems, excpecially XGBoost and LightGBM were expected to 

use comparable power and obtain similar results to Phase 1 (with 0.98  

of ROC AUC). However, these models needed to use much more power with  higher lag 

(from 55 to 60ms). This resulted in a lower throughput and higher power consumption 

(10 to 11 Watts). 

Random Forest and AdaBoost are similar approaches and still remain underperformers. 

With greater than 70 ms latency, under 14 FPS throughput, and 64–65 °C temperatures, 

these models pose risks for real-time deployment on constrained hardware. The baseline 

Softmax classifier, on the other hand, provided intermediate results (48 ms, 21 FPS, 8.5 

W, 58 °C) and although these are efficient results, the predictive performance relative to 

SVM and MLP is disappointing. Predictive performance does increase but the classifier 

is still underperforming by comparison and relative to MLP. 

With the findings on SVM and MLP, it is obvious these are the most clinically viable 

classifiers to use for the rest of the Phase 1 work (ROC–AUC ≈ 0.96) on the diagnosis, 

coupled with low latency responsive and efficient use of power and thermal equilibrium 

from the Phase 2 work. The results do reaffirm the rationale for the two-phase evaluation 

pipeline and the routing of the analysis and testing to the two phases. Phase 1 covers the 

reliability and accuracy of the algorithms, while Phase 2 assesses the system’s efficacy 

against the real-time, resource-constrained clinical environment. 

Throughout the entire evaluation process, the combination of GoogLeNet and SVM was 

the most dependable and effective classifier. It showed remarkable diagnostic precision 

within the first phase, most accurately distinguishing among glioma, meningioma, and 

pituitary tumors. 

 
Figure 5.2: Snapshot of the custom GUI running on the Jetson Orin Nano. 

Displaying an input MRI slice and the predicted output for a pituitary tumor, along with 

class confidence scores. 

It also extended and sustained this strength in phase two during edge deployment, 

demonstrating rapid inference with effective resource usage and stable thermal dynamics. 

This illustrates that the combination of GoogLeNet and SVM performs well and provides 

real-time, point-of-care, and clinically relevant practices, solidifying its place as a top 
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candidate for embedded medical AI solutions. This deployment's impact and efficacy are 

shown to a greater extent via the custom GUI, which showcased the real-time prediction 

of pituitary tumors, demonstrating the Jetson device's capabilities. 

6. Conclusion 

This study designs a two-phase framework that automates the classification of brain 

tumors using machine learning classifiers based on GoogleNet features. In Phase 1, the 

models obtained high diagnostic accuracy, with GoogLeNet + SVM being the most 

successful. In Phase 2, the optimized models were executed on the NVIDIA Jetson Orin 

Nano. Due to quantization and the lightweight GUI, real-time predictions were possible 

in point-of-care settings. The GUI presentation, including successful classification of a 

pituitary tumor, demonstrated the practical feasibility of the framework. These results 

illustrate that GoogLeNet + SVM not only provides impressive algorithmic accuracy but 

also performs exceptionally on embedded systems with minimal latency, energy 

consumption, and thermal cooling. Optimizing precision and performance validates the 

framework's potential as a strong basis for implementing edge AI in bedside diagnostics 

and emergency medicine, wherein the most advanced AI models bridge the gap between 

deep learning and practical medicine—from the lab to real-world use—for reliability, 

speed, and autonomy.Although the current framework is concentrating on three major 

tumor types, future work could expand the system to a wider range of intracranial 

malignancies like metastatic tumors, lymphoma, or even non-tumorous conditions. The 

use of more advanced imaging techniques like fMRI, DWI, and spectroscopy to analyze 

and enhance different aspects of the same tumor could also improve the dependability 

and strength of the system. Besides, federated learning or on-device continuous learning 

will help the model adapt to new datasets over time while keeping the data confidential. 

Optimizing the system for TensorRT acceleration and hybrid inference between the GPU 

and CPU will help in the reduction of latency as well as the increase of the overall energy 

efficiency of the system. 
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