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Abstract

Computational thinking (CT) has become a central competency for twenty-first-century education, yet its integration
into mathematics learning, particularly fractions, remains underexplored in the elementary context. This study aimed
to profile elementary students’ CT in solving fraction problems using a mixed-methods design. A total of 380 students
completed a multiple-choice test on fractions, with items mapped to four CT dimensions: decomposition, pattern
recognition, abstraction, and algorithmic thinking. Descriptive statistics and categorization placed students into low,
medium, and high CT levels. To complement these findings, essay responses from representative students in each
category were qualitatively analyzed. The quantitative results indicated a mean CT score of 73.87, with abstraction
emerging as the strongest dimension and pattern recognition as the weakest. Most students (68.16%) demonstrated
medium-level CT, 19.47% were categorized as low, and only 12.37% achieved high CT. The qualitative findings
highlighted distinct reasoning profiles: high-CT students displayed systematic problem decomposition, accurate
algorithmic execution, abstraction, and explicit verification; medium-CT students showed procedural fluency but
incomplete reasoning; and low-CT students often presented conclusions without revealing their processes. These
results suggest that while elementary students possess foundational procedural skills, many lack higher-order CT
processes such as verification, justification, and generalization. The study extends CT research into fraction learning
and offers implications for instructional design, emphasizing the need to embed CT explicitly into mathematics
education to prepare students for twenty-first-century learning demands. These findings also contribute to the global
agenda of Sustainable Development Goal (SDG) 4 by highlighting the importance of integrating computational
thinking into mathematics education to promote quality and equitable learning.

Keywords: Computational thinking; Fraction problem-solving; Elementary education; Mathematics learning; Student
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Introduction

In the era of rapid technological advancement and globalization, education systems
worldwide face increasing pressure to cultivate competencies that transcend traditional subject
knowledge. The framework of twenty-first-century skills identifies a set of abilities essential for
learners’ success in the digital age, including creativity, critical thinking, problem-solving,
collaboration, communication, and computational thinking (CT). Computational thinking, in
particular, has gained significant attention because of its relevance not only to computer science
but also to broader domains such as mathematics, science, and everyday problem-solving (Wing,
2006; Adorni et al., 2024; Assaf et al., 2024). Defined as a problem-solving process involving
decomposition, pattern recognition, abstraction, algorithmic thinking, verification, and
communication, CT equips students with the capacity to approach complex tasks systematically
and flexibly. Evidence increasingly shows that fostering CT in schools enhances students’ ability
to apply mathematical knowledge creatively and critically, thereby supporting their readiness for
future challenges (Bocconi, Chioccariello, & Earp, 2018; Angeli et al., 2016). This emphasis on
equipping learners with higher-order thinking skills is also aligned with the United Nations
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Sustainable Development Goal (SDG) 4, which calls for inclusive, equitable, and quality education
that prepares students to thrive in the challenges of the twenty-first century.

Mathematics education represents a particularly fertile context for integrating CT, as
mathematical tasks inherently require reasoning, abstraction, and structured problem-solving. CT
contributes to mathematics learning by encouraging students to not only carry out procedures but
also to design strategies, test alternative solutions, and reflect on their reasoning processes (Grover
& Pea, 2013; Shute, Sun, & Clarke, 2017). In this way, CT is not an additional subject to be taught
in isolation but a set of practices embedded within the learning of core concepts, including
arithmetic, algebra, geometry, and particularly fractions. By leveraging CT in mathematics
instruction, educators can help students bridge the gap between procedural fluency and conceptual
understanding, fostering deeper engagement and long-term retention of knowledge.

Fractions, however, continue to pose persistent difficulties for learners across different
educational systems. Numerous studies document that elementary students struggle with
understanding part—whole relationships, interpreting the role of numerators and denominators,
identifying equivalent fractions, and performing operations with unlike denominators (Yuirtsever
& Nilgiin, 2012; Deringol, 2019; Fittriyanti, Zubainur, Anwar, & Novianti, 2020). For instance,
research in Indonesian primary schools indicates that students frequently make errors in
simplifying fractions, equating denominators, and translating verbal problems into fractional form,
leading to fragmented and proceduralized knowledge (Murjani, Kartini, & Elhawwa, 2022).
Ratnasari (2020) also found that students often misapply operations with fractions, such as
confusing the rules for adding and multiplying fractions, reflecting deeper conceptual
misconceptions. Similar findings emerge across different contexts, where both students and even
pre-service teachers show limited ability to represent fractions on number lines, use visual models
effectively, or connect symbolic representations with conceptual meaning (Fittriyanti et al., 2020;
Deringol, 2019). These studies collectively demonstrate that fraction knowledge is fragile, often
confined to surface-level procedures without deeper conceptual grounding.

Given these challenges, researchers argue that cultivating CT processes can play a
transformative role in learning fractions. Decomposition helps students break down fraction
problems into manageable sub-tasks; pattern recognition enables them to see relationships among
equivalent fractions; abstraction allows them to focus on structural properties of ratios rather than
superficial features; algorithmic thinking supports systematic procedures for operations; and
verification encourages them to check their reasoning against benchmarks such as one-half or one
whole (Weintrop et al., 2016; Kong & Abelson, 2019). Without these competencies, students are
likely to rely on rote memorization of rules, leading to brittle understanding and frequent
misconceptions. Thus, integrating CT into fraction instruction aligns with the call for mathematics
education that equips students with twenty-first-century competencies while addressing long-
standing difficulties in one of the most foundational mathematical domains.

Despite growing interest in CT, research on its implementation in mathematics particularly
in primary education remains limited. Many studies have examined CT development in contexts
such as computer science education, robotics, or programming (Brennan & Resnick, 2012; Grover
& Pea, 2013), while fewer have focused on mathematical problem-solving in elementary schools.
Within mathematics, most investigations employ either quantitative designs using multiple-choice
instruments or purely qualitative analyses such as interviews and open-ended tasks (Adiyastuti,
Sutama, & Hidayati, 2024; Priharvian & Ibrahim, 2024). While such studies provide valuable
insights, they rarely capture the full spectrum of CT skills across learners of varying proficiency
levels. Mixed-methods approaches, which combine large-scale quantitative data with in-depth
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qualitative analysis, are particularly promising for profiling students’ CT comprehensively.
Through quantitative assessment, students can be categorized into levels such as low, medium,
and high CT, while qualitative exploration of representative responses reveals the underlying
reasoning processes that differentiate these categories.

Internationally, the integration of CT into twenty-first-century learning frameworks
underscores its growing recognition as a foundational literacy alongside reading, writing, and
numeracy (Voogt et al., 2015; Cajandig & Ledesma, 2025). Countries revising their mathematics
curricula increasingly highlight competencies related to problem-solving, algorithmic design, and
abstraction, embedding CT across grade levels (Stephens & Keqgiang, 2014). Yet, empirical studies
profiling CT in specific mathematical domains, such as fractions, remain scarce. This lack of
evidence limits teachers’ ability to design targeted interventions and policy-makers’ efforts to align
curriculum goals with twenty-first-century demands.

Against this backdrop, the present study seeks to profile elementary students’ computational
thinking in solving fraction problems using a mixed-methods approach. First, students’ CT levels
are categorized quantitatively based on multiple-choice tests, providing a broad picture of
distribution across low, medium, and high categories. Next, representative essay responses from
each category are analyzed qualitatively to uncover how CT manifests in actual problem-solving
processes. By triangulating these findings, the study aims to provide a nuanced understanding of
students’ strengths and weaknesses in computational thinking as it relates to fraction learning.
Ultimately, the results are expected to inform pedagogical practices, curricular development, and
future research agendas aimed at strengthening both mathematical proficiency and twenty-first-
century competencies from an early age. Beyond its contribution to filling research gaps, this study
also supports global educational priorities by strengthening the evidence base for improving
mathematics education quality in line with SDG 4, thereby promoting inclusive and equitable
learning opportunities for elementary students.

Method
Research Design

This study employed a mixed-methods design, combining quantitative and qualitative
approaches to provide a comprehensive profile of elementary students’ computational thinking
(CT) in solving fraction problems. The quantitative strand aimed to categorize students into levels
of CT (low, medium, and high) based on their performance in multiple-choice questions (MCQs).
The qualitative strand further explored the reasoning processes of representative students from
each category through essay-type tasks. The integration of these strands provided both breadth and
depth in understanding students’ CT, consistent with recommendations for mixed-methods studies
in mathematics education (Creswell & Plano Clark, 2017).
Participants

The participants consisted of 380 elementary school students from grades five and six in
Indonesia. These students were selected using cluster random sampling across several schools to
ensure diversity in background and academic achievement. All participants had received prior
instruction in fractions as part of the national mathematics curriculum. The sample size was
considered adequate for quantitative analysis and ensured sufficient variation to identify students
across different CT levels.
Instruments

Two instruments were developed to measure students’ computational thinking in the context
of fractions:
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1. Multiple-Choice Test (10 items)

The test assessed students’ ability to apply CT skills such as decomposition, pattern
recognition, abstraction, and algorithmic thinking in fraction problem-solving. Each item was
aligned with at least one CT indicator. Example items included identifying equivalent
fractions, solving word problems involving addition or subtraction of fractions, and reasoning
about part—-whole relationships. Item validity was reviewed by three mathematics education
experts, and reliability analysis indicated acceptable internal consistency (Cronbach’s o =
0.78).

2. Essay Task (1 item)

A single open-ended problem was designed to capture deeper reasoning processes: “A
water tank is filled 2/5 full. Then, 1/4 more of the tank is added. Is the tank now half full?
Justify your answer with calculations and explanations.” This item was selected for its
potential to elicit multiple CT dimensions, including decomposition of tasks, recognition of
patterns, use of abstraction, sequencing of steps, and verification of results.

Data Collection

Data collection occurred in two stages. In the first stage, all 380 students completed the
multiple-choice test under standardized classroom conditions within a 45-minute period. Based on
their test scores, students were classified into three categories of CT ability: low, medium, and
high. In the second stage, representative students from each category (one exemplar response per
level) were purposively selected to complete the essay task. Their written responses were
transcribed and prepared for qualitative analysis.

Data Analysis

Quantitative data were analyzed using descriptive statistics, including mean scores,
frequency distributions, and percentages of students in each CT category. Each MCQ was mapped
to specific CT dimensions, enabling calculation of average performance across decomposition,
pattern recognition, abstraction, and algorithmic thinking.

Qualitative data were analyzed using thematic coding aligned with the CT framework
(Weintrop et al., 2016). Responses were examined for evidence of: (a) decomposition, (b) pattern
recognition, (c) abstraction, (d) algorithmic thinking, (e) verification, and (f) communication. A
coding rubric was developed with four levels of proficiency for each construct (0 = absent, 1 =
minimal, 2 = partial, 3 = explicit/complete). To ensure reliability, two independent coders applied
the rubric to 20% of the sample, achieving a Cohen’s Kappa of 0.82, which indicates strong
agreement (Landis & Koch, 1977). Discrepancies were resolved through discussion before
proceeding with full coding.

Integration of findings occurred during the interpretation phase, where quantitative
distributions of CT levels were triangulated with qualitative exemplars to provide a holistic
understanding of students’ computational thinking.

Ethical Considerations

The study was conducted in accordance with ethical research guidelines. Informed consent
was obtained from school authorities, parents, and students prior to data collection. Participation
was voluntary, and students were assured that their performance would not affect their school
grades. Data were anonymized to protect participants’ privacy.
Results
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Quantitative Findings
A total of 380 elementary students completed the multiple-choice test on fractions,
designed to assess computational thinking (CT) skills. Descriptive statistics of the overall CT
scores are shown in Table 1.
Table 1. Descriptive statistics of CT scores (N = 380)
N Range Minimum Maximum Sum Mean Std. Deviation  Variance
380 90.00 10.00 100.00 28070.0 73.87 20.55 422.20

The results indicate that students’ CT scores ranged widely from 10 to 100, with a mean of
73.87, reflecting a moderate overall ability. The relatively high standard deviation (20.55) and
variance (422.20) suggest substantial variation in student performance, with some students
demonstrating strong CT while others showed considerable weaknesses.
To provide further insight, the test items were mapped to specific CT dimensions. The
average performance across these dimensions is summarized in Table 2.
Table 2. Average scores of computational thinking dimensions

CT Dimension Items Mean Score (%) Overall Average (%)
Decomposition 1,49 93.4;67.4;77.9 79.6
Pattern recognition 5, 8 64.2; 55.3 59.8
Abstraction 2,10 88.4; 80.0 84.2
Algorithmic 1,3,4,6,7,9, 93.4;85.0;67.4;59.7; 67.4; 75 8
thinking 10 77.9; 80.0 )

Among the CT dimensions, abstraction was the strongest (M = 84.2%), showing that most
students could effectively filter out irrelevant details and represent fraction problems symbolically.
In contrast, pattern recognition was the weakest (M = 59.8%), revealing difficulties in identifying
relationships among fractions and generalizing procedures. Performance in decomposition (M =
79.6%) and algorithmic thinking (M = 75.8%) was moderate, suggesting that students could
generally break down problems and follow procedures but with variability in accuracy and
completeness.

Based on composite CT scores, students were classified into three categories: low, medium,
and high. Table 3 presents the distribution.

Table 3. Distribution of students across CT categories

CT Category Frequency Percentage
Low 74 19.47%
Medium 259 68.16%
High 47 12.37%
Total 380 100%

The findings indicate that the majority of students (68.16%) were in the medium CT
category, demonstrating procedural competence but lacking consistency in verification and
communication. A smaller proportion (19.47%) were in the low category, often unable to display
systematic reasoning, while only 12.37% reached the high category, showing strong mastery
across CT dimensions.

Taken together, these results highlight three key patterns: (1) students’ CT performance
was highly variable, as shown by the wide score range; (2) abstraction emerged as the relative
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strength, whereas pattern recognition was the most significant weakness; and (3) most students

were clustered at the medium CT level, with relatively few reaching high proficiency.

Quualitative Findings

To further illuminate these results, one representative essay response was analyzed from
each CT level. The open-ended problem asked: “A water tank is filled 2/5 full. Then, 1/4 more of
the tank is added. Is the tank now half full? Justify your answer with calculations and
explanations.”

High-CT Response

A high-performing student demonstrated comprehensive CT skills. The solution was
structured into sub-tasks (decomposition): converting 2/5 and 1/4 to equivalent fractions with
denominator 20, adding to obtain 13/20, and comparing with the benchmark 1/2 = 10/20. The
student explicitly explained each step, verified the result, and concluded correctly that the tank
was more than half full. This response scored the maximum across all CT dimensions, illustrating
mastery of algorithmic thinking, abstraction, and verification.

Medium-CT Response

A medium-level student successfully converted and added fractions (2/5 + 1/4 = 13/20) but

did not explicitly compare the result with 1/2. While the calculation was correct, the reasoning was

incomplete, and the final explanation was ambiguous (“already 13, which is more than 20”). This

suggests procedural fluency in algorithmic steps but weaknesses in verification and
communication.

Low-CT Response

A low-level student wrote only: “Because 13/20 > 10/20, the tank is more than half full.”

While the final conclusion was correct, the response omitted essential intermediate steps such as

converting and adding fractions. This indicates reliance on memorized results rather than

systematic reasoning, with decomposition and algorithmic thinking largely absent.

Summary of Findings
The combined results suggest three key insights:

1. CT is unevenly distributed across dimensions, with abstraction relatively strong but pattern
recognition weak.

2. Most students operate at a medium CT level, able to execute procedures but struggling with
verification, flexibility, and communication.

3. Qualitative profiles highlight distinct patterns: high-CT students exhibit systematic, explicit,
and reflective reasoning; medium-CT students demonstrate partial but incomplete reasoning;
and low-CT students often jump to results without showing processes.

These findings provide evidence that while elementary students possess foundational skills in
fractions, their computational thinking is still developing, with critical gaps that need targeted
pedagogical interventions.

Discussion

This study aimed to profile elementary school students’ computational thinking (CT) in
solving fraction problems through both quantitative and qualitative analyses. The findings revealed
that the average CT score was moderate (M = 73.87, SD = 20.55), with considerable variability
(range = 10-100). Most students (68.16%) fell into the medium CT category, while only a small
proportion (12.37%) demonstrated high CT. A dimension-level analysis further revealed that
abstraction was the strongest area, whereas pattern recognition was the weakest. The essay
responses from selected students provided qualitative confirmation of these patterns: high-level
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students showed systematic reasoning and verification, medium-level students displayed partial
reasoning, and low-level students often presented results without demonstrating their processes.
These findings must be interpreted in the broader context of existing research on computational
thinking, mathematics education, and twenty-first-century skills.

Uneven Development Across CT Dimensions

The finding that students performed relatively well in abstraction but struggled with pattern
recognition reflects an uneven development of CT dimensions. Abstraction, defined as the ability
to filter out irrelevant information and focus on essential features (Wing, 2006; Weintrop et al.,
2016), was particularly evident in high-performing students who successfully converted fractions
into equivalent denominators before performing operations. This demonstrates that even at the
elementary level, many students can engage in symbolic reasoning, which is central to
mathematics learning.

However, the weakness in pattern recognition (M = 59.8%) indicates that students had
difficulty identifying similarities and generalizing relationships among fractions. Prior research
has consistently found that pattern recognition is one of the more advanced CT dimensions and
develops later than procedural competence (Grover & Pea, 2013; Rittle-Johnson, Schneider, &
Star, 2015). For example, Ratnasari (2020) found that Indonesian students often fail to recognize
fraction equivalence unless it is explicitly taught. Similarly, Lamon (2007) argued that
proportional reasoning and pattern generalization are the cornerstones of rational number
understanding, yet they are also the most challenging aspects for students worldwide.

Profiles of Computational Thinking Levels
High-CT Profile

The high-CT group, comprising only 12.37% of the total participants, provides a clear
illustration of how computational thinking can be successfully integrated into mathematical
problem-solving at the elementary level. These students approached the fraction task in a
structured and systematic manner. Their work typically began with a clear decomposition of the
problem into smaller sub-tasks: first, identifying that the two fractions involved (2/5 and 1/4) must
be expressed in equivalent denominators; second, performing the addition operation; and third,
comparing the result with the benchmark of 1/2. This three-step process demonstrates an ability to
plan and execute a strategy before carrying out calculations, which reflects the problem structuring
emphasized in computational thinking frameworks (Brennan & Resnick, 2012; Wing, 2006).

Algorithmic thinking was another prominent strength of this group. Students not only
selected the correct algorithm (finding least common denominators and aligning fractions) but also
executed it in a systematic and accurate order. Their solutions often included intermediate steps
such as showing 2/5 = 8/20 and 1/4 = 5/20, then adding to obtain 13/20. This sequential reasoning
is consistent with Shute, Sun, and Clarke’s (2017) description of algorithmic design as the
construction of clear, ordered steps toward problem resolution. Such fluency with algorithms also
indicates that high-CT students were not simply applying memorized rules; rather, they
demonstrated procedural understanding integrated with reasoning.

Perhaps the most striking characteristic of high-CT students was their ability to use
abstraction effectively. These students were able to move seamlessly between the contextual
problem (“a tank is 2/5 full, then 1/4 more is added”) and the symbolic representation required for
solution. They showed comfort in representing contextual information as fractions, converting
those fractions into equivalent forms, and manipulating them symbolically. Weintrop et al. (2016)
describe abstraction as one of the defining features of CT, enabling learners to filter out extraneous
details and focus on the mathematical essence of a problem. High-CT students demonstrated
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precisely this skill, revealing a maturity in mathematical reasoning not commonly observed at this
age.

Verification and justification set this group apart from their peers. After computing 13/20,
high-CT students did not stop at the numerical answer; they explicitly compared the result with
1/2 = 10/20 and articulated that the tank was more than half full. Many went further by providing
verbal explanations in complete sentences, showing awareness that their solution must be
communicated clearly. This verification process aligns with the debugging stage in computational
thinking (Wing, 2006) and rejlects metacognitive engagement with the problem.
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Figure 1. Representative solution from a high-CT student showing systematic reasoning in

solving a fraction problem

These findings resonate with international studies showing that students with advanced CT
skills demonstrate both algorithmic precision and reflective reasoning. Grover and Pea (2013), for
example, reported that high-CT learners tend to cross-check their solutions and articulate reasoning
beyond procedural steps. Similarly, Angeli et al. (2016) stressed that the hallmark of CT is not
merely performing operations but doing so in a way that is strategic, reflective, and generalizable.
In this sense, the high-CT students in the present study exemplify the type of learner envisioned
by twenty-first-century skill frameworks: capable not only of solving problems correctly but also
of explaining and justifying their reasoning in ways that support transfer to new contexts.
Medium-CT Profile

The medium-CT group represented the majority of students (68.16%), offering a picture of
learners who are competent in procedural execution but limited in conceptual reasoning and
verification. These students often began their solutions in ways similar to the high-CT group. They
could decompose the problem by recognizing the need to combine 2/5 and 1/4 and typically carried
out the required algorithm of finding equivalent denominators. Many arrived at the correct result
of 13/20, showing that decomposition and algorithmic thinking were present.
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However, while their algorithmic steps were correct, their solutions frequently lacked
completeness in abstraction and verification. Students in this group could represent the problem
symbolically, but their interpretations of the symbolic result were often shallow or ambiguous. For
example, after computing 13/20, some wrote statements such as “already 13, which is more than
20.” This response reveals a misunderstanding of the relationship between numerators and
denominators, a common fraction misconception reported in the literature (Ratnasari, 2020;
Deringol, 2019). In terms of abstraction, these students could produce the symbols but struggled
to map those symbols meaningfully onto the real-world context.

Pattern recognition was particularly weak in this group. While they could identify that 2/5
and 1/4 must be converted before addition, they rarely generalized this as a strategy for other
fraction comparison problems. Their reasoning remained tightly bound to the immediate problem,
with little evidence of transfer or generalization. This echoes Rittle-Johnson, Schneider, and Star’s
(2015) observation that many learners can execute procedures without understanding the
underlying concepts, making their knowledge fragile and context-dependent.

Verification was another area of weakness. Medium-CT students often stopped at the
numerical result without explicitly comparing 13/20 to 1/2. When they did attempt verification,
their explanations were incomplete or imprecise. This gap between computation and reasoning
highlights what Hiebert and Grouws (2007) call the “procedural-conceptual divide,” where
students succeed in following algorithms but lack the conceptual depth to check and justify their
results.
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Figure 2. Representative solution from a medium-CT student demonstrating correct steps yet
limited reasoning and justification

The medium-CT profile is significant because it captures the reality of most elementary
learners: they can compute, but they do not yet reason flexibly or verify systematically. Prior
studies in Indonesia and other countries confirm this trend. Fittriyanti et al. (2020) found that while
many Indonesian elementary students could add and subtract fractions correctly, they struggled to
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explain why their procedures worked. Similarly, Zaenal Abidin, Herman, and Wahyudin (2023)
reported that teachers observed procedural competence but weak reasoning when integrating CT
into mathematics lessons. Thus, the medium-CT group represents an important target for
pedagogical intervention, as these students are on the cusp of higher-level reasoning but require
scaffolding to move beyond procedures.

Low-CT Profile

The low-CT group, comprising 19.47% of the students, showed minimal evidence of
computational thinking processes in their responses. Their work was typically characterized by
incomplete decomposition, weak or incorrect algorithmic application, superficial abstraction, and
absent verification.

In terms of decomposition, these students often failed to break the problem into sub-tasks.
Instead of converting fractions to equivalent denominators and then adding, they sometimes
jumped directly to a conclusion. Others attempted decomposition but did so incorrectly, for
example, by misaligning denominators or confusing the roles of numerator and denominator. Such
errors reflect deep misconceptions about fractions, which have been extensively documented in
mathematics education research (Lamon, 2007; Deringél, 2019).

Algorithmic thinking was fragile. When algorithms were attempted, they were often
applied incorrectly, leading to computational errors. In some cases, students produced no
intermediate steps at all, suggesting either guesswork or rote reliance on partial knowledge.
Abstraction was equally weak; many students failed to translate the contextual problem into
meaningful symbolic expressions. Even when they wrote “2/5 + 1/4,” they were unable to
manipulate these fractions correctly, showing a lack of symbolic reasoning skills.

Verification and justification were almost entirely absent. One illustrative response was
“Because 13/20 > 10/20, the tank is more than half full.” While correct in conclusion, the solution
did not include any of the preceding steps necessary to arrive at 13/20. This highlights an important
caution: correct answers do not necessarily reflect strong CT. Brennan and Resnick (2012) warned
that without examining process evidence, educators may overestimate students’ CT proficiency.
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Figure 3. Representative solutiorilﬁfrom a low-CT student revealing fragmented reasoning and
reliance on guessing rather than systematic problem-solving

The low-CT profile aligns with findings from Adiyastuti, Sutama, and Hidayati (2024),
who reported that elementary students with weak CT often omit reasoning steps and rely heavily
on memorization. It also illustrates the importance of formative assessment practices that evaluate
not only outcomes but also the reasoning processes leading to those outcomes.

Comparative Synthesis

When considered together, the three profiles illustrate a developmental continuum of CT
in fraction problem-solving. High-CT students demonstrate integrated mastery of all dimensions,
combining procedural fluency with abstraction, pattern recognition, and verification. Medium-CT
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students show strong procedural competence but weak reasoning and generalization, reflecting a
transitional stage between algorithmic fluency and conceptual understanding. Low-CT students
display fragmented or absent CT processes, with responses that are either incomplete, incorrect,
or superficially correct without supporting reasoning.

This continuum supports the idea of CT as a progressive construct rather than a binary skill
(Voogt et al., 2015; Kong & Abelson, 2019). It also underscores the importance of analyzing not
only test scores but also student work artefacts. By examining how students structure problems,
apply algorithms, and justify solutions, educators can better identify strengths and weaknesses in
CT development. The inclusion of student artefacts in research provides authentic evidence of
reasoning processes and makes visible the often-hidden dimensions of CT.

Implications for Fraction Learning

The findings also contribute to our understanding of fractions as a notoriously difficult area
of mathematics. Misconceptions about fractions are well-documented, including treating
numerators and denominators as independent whole numbers (Deringdl, 2019), confusing fraction
size (Fittriyanti et al., 2020), and failing to see equivalence (Ratnasari, 2020). The current study
suggests that CT dimensions intersect with these challenges. For example, weak pattern
recognition exacerbates difficulties with recognizing equivalent fractions, while limited
verification hinders students from checking whether their results make sense in context.

International assessments such as PISA have shown that Indonesian students often
underperform in mathematical reasoning tasks, including fractions (OECD, 2019). The present
findings help explain why: although students can perform algorithms, they struggle with higher-
order CT processes like generalization, pattern recognition, and reasoning. Strengthening these
areas may therefore improve not only computational thinking but also broader mathematical
literacy. Integrating these strategies into classroom practice not only enhances mathematical
proficiency but also supports the achievement of SDG 4 by ensuring inclusive and effective
learning outcomes for all students.

CT and 21st-Century Learning

Computational thinking is increasingly recognized as a key competency for the twenty-
first century (Wing, 2006; Voogt et al., 2015). Mathematics, particularly topics like fractions,
provides an authentic context for developing CT because it requires decomposition, abstraction,
and algorithmic design. However, the fact that only 12.37% of students demonstrated high CT
suggests that current instructional practices are not sufficient to cultivate advanced CT at the
elementary level. This finding aligns with Bocconi, Chioccariello, and Earp (2018), who reported
that CT integration in school curricula remains uneven across countries, often limited to coding or
ICT contexts rather than embedded in core subjects such as mathematics.

For Indonesia, the findings resonate with recent reforms emphasizing competencies such
as problem-solving and digital literacy in the Merdeka Curriculum. However, Zaenal Abidin,
Herman, and Wahyudin (2023) found that many teachers still lack confidence in integrating CT
into daily mathematics instruction. The present study provides concrete evidence of both the
promise (e.g., abstraction ability) and the gaps (e.g., pattern recognition, verification) in students’
CT, offering guidance for curriculum and teacher training. This aligns with SDG 4, which
emphasizes quality education, as well as SDG 9 (Industry, Innovation, and Infrastructure), given
that computational thinking prepares students to actively contribute to innovation-driven societies.
Pedagogical Implications

The results suggest several instructional strategies to strengthen CT in fraction learning:

1132



LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT 8§
ISSN:1581-5374 E-ISSN:1855-363X LEX-
VOL. 23, NO. 11(2025) LOCALIS

1. Emphasize verification and reasoning. Teachers should encourage students not only to
compute answers but also to explain and check their results. This could be achieved through
peer discussion, reflective writing, or self-assessment prompts (Shute et al., 2017).

2. Use multiple representations. Visual models such as fraction strips or number lines can support
pattern recognition by helping students see equivalence and proportionality (Lamon, 2007).

3. Integrate problem-based learning. Presenting fractions in real-world contexts can foster
decomposition and abstraction skills while also engaging students in meaningful mathematical
practices (Priharvian & Ibrahim, 2024).

4. Leverage digital tools. Interactive simulations and apps can scaffold algorithmic thinking and
visualization, making abstract fraction concepts more accessible (Korkmaz & Bai, 2019).

5. Differentiate instruction. Given the wide variance in CT performance, teachers should design
tasks at varying levels of difficulty and provide tailored scaffolding for low-CT learners while
extending challenges for high-CT students (Grover & Pea, 2013).

Theoretical Contributions

From a theoretical standpoint, this study contributes to computational thinking research in
three ways. First, it extends the application of CT beyond programming to core mathematics
content, supporting calls by Weintrop et al. (2016) and Angeli et al. (2016) to embed CT across

disciplines. Second, it demonstrates the value of mixed methods: quantitative profiling provides a

broad categorization, while qualitative analysis of student work reveals the nature of reasoning

behind those categories. Third, it refines our understanding of CT development in fractions by
highlighting the asymmetry among dimensions (abstraction > decomposition > algorithmic
thinking > pattern recognition).

Limitations and Future Research

While the study offers important insights, it also has limitations. The essay analysis
included only one representative response from each CT level; future studies should analyze a
larger sample to capture variability within categories. In addition, the tasks were limited to basic
fraction operations; extending to more complex tasks (e.g., proportional reasoning, fraction
comparison in real-life contexts) may reveal further nuances in CT. Longitudinal studies are also
needed to track how CT develops over time and how specific pedagogical interventions impact
different dimensions.

Conclusion

This study examined elementary students’ computational thinking (CT) in solving fraction
problems through a mixed-methods approach. Quantitative analysis of 380 students revealed that
the majority (68.16%) demonstrated medium-level CT, with relatively strong abstraction but weak
pattern recognition. Qualitative analysis of student essays confirmed these findings by illustrating
distinct profiles: high-CT students integrated decomposition, algorithmic thinking, abstraction,
and verification; medium-CT students displayed procedural fluency but incomplete reasoning; and
low-CT students often presented conclusions without showing their processes.

These results highlight that while elementary learners possess foundational procedural
skills in fractions, many struggle with higher-order CT processes such as generalization,
verification, and justification. The findings underscore the importance of embedding CT explicitly
into mathematics instruction, not only as technical procedures but as reflective practices that foster
reasoning and communication.
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Theoretically, this study extends CT research into the domain of fraction learning,
demonstrating that CT can serve as a useful lens for analyzing mathematical thinking. Practically,
it offers guidance for teachers and curriculum designers to strengthen CT development by
emphasizing verification, using multiple representations, and integrating problem-based learning.
By nurturing computational thinking from the early grades, educators can better prepare students
for twenty-first-century learning demands. In this regard, the study contributes to advancing SDG
4 (Quality Education) by providing empirical evidence on how embedding computational thinking
in elementary mathematics fosters equitable, high-quality learning opportunities.
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