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Abstract

Background: Early and accurate detection of dementia progression remains a criti- cal challenge in neuroimaging,
with most existing approaches limited to binary or ternary classification schemes that inadequately capture the gradual
cognitive decline character- istic of Alzheimer’s disease (AD). Methods: We propose NeuroFusion-AD, a novel hy-
brid deep learning framework that integrates three complementary processing streams: (1) 3D convolutional neural
networks for whole-brain volumetric feature extraction, (2) 2D CNN coupled with bidirectional LSTM for slice-
sequential temporal modeling, and (3) vision transformer with anatomical position encoding for multi-region fusion.
The ar- chitecture incorporates ordinal classification constraints, self-supervised pretraining via masked volume
modeling, and multi-task learning for joint stage prediction and cognitive score regression. We evaluated the framework
on the ADNI dataset (2,847 subjects, 7,234 scans) with external validation on OASIS (755 subjects, 2,168 sessions)
across five clin- ical stages: Cognitively Normal (CN), Significant Memory Concern (SMC), Early Mild Cognitive
Impairment (EMCI), Late Mild Cognitive Impairment (LMCI), and Alzheimer’s Disease (AD). Results: NeuroFusion-
AD achieved superior performance with 97.5% ac- curacy, 97.2% precision, 96.9% recall, and 97.0% F1-score,
significantly outperforming state-of-the-art methods including LGG-NeXt (95.81% accuracy), AD-Diff (90.78% accu-
racy), and traditional CNNs (72-78% accuracy). Stage-wise analysis demonstrated robust sensitivity (>94%) and
specificity (>96%) across all dementia stages, with particularly strong performance in challenging SMC (95.8%
sensitivity) and EMCI (94.5% sensitiv- ity) classifications. Statistical significance testing confirmed improvements over
baselines (p < 0.05 for all comparisons), with large effect sizes (Cohen’s d: 0.42-2.87). Conclu- sions: The proposed
NeuroFusion-AD framework addresses critical limitations in auto- mated dementia classification by providing accurate
five-stage categorization with clinical interpretability through attention visualization and ordinal constraint
enforcement. The multi-stream architecture’s balanced performance across all stages supports its potential for clinical
deployment in early dementia detection and monitoring.

Keywords: Alzheimer’s disease, Dementia classification, Deep learning, MRI neuroimag- ing, Hybrid architectures,
Ordinal regression

1.Introduction

Alzheimer’s disease (AD) represents the most prevalent form of dementia, affecting approxi-
mately 50 million individuals worldwide and imposing substantial socioeconomic burdens on
healthcare systems globally (Payan and Giovanni, 2015). The progressive nature of AD in- volves
gradual cognitive decline through clinically recognized stages, beginning with subtle memory
concerns and advancing through mild cognitive impairment (MCI) phases before cul- minating in
severe dementia. Early detection during prodromal stages is crucial for therapeutic intervention,
clinical trial enrollment, and care planning, yet remains challenging due to over- lapping symptoms
and gradual progression patterns (Gao et al., 2017).

Structural magnetic resonance imaging (MRI) provides non-invasive visualization of brain
morphology, capturing neuroanatomical changes associated with AD progression including
hippocampal atrophy, cortical thinning, and ventricular enlargement (Korolev et al., 2017). These
alterations often precede clinical symptoms, making MRI-based automated classification a promising
approach for early detection. However, existing computational methods face sev- eral critical
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limitations: (1) most approaches focus on binary (AD vs. normal) or ternary (AD vs. MCI vs.
normal) classification, inadequately capturing the gradual progression through multiple clinical
stages; (2) traditional convolutional neural networks (CNNs) may miss impor- tant temporal and
spatial relationships inherent in neuroimaging data; (3) class imbalance and ordinal relationships
between stages are often ignored; and (4) limited interpretability restricts clinical adoption.

Recent advances in deep learning have introduced hybrid architectures combining multiple
neural network paradigms to leverage complementary strengths (Karim et al., 2017). Trans- former
architectures have demonstrated remarkable success in capturing long-range dependen- cies and
global context through self-attention mechanisms, while recurrent networks excel at modeling
sequential patterns (Taqi et al., 2018). The integration of these approaches with 3D CNNs for
volumetric feature extraction presents opportunities for comprehensive neuroimag- ing analysis
(Liu et al., 2024).

Contemporary hybrid CNN-Transformer models have shown significant promise in medical
imaging applications. Liu et al. (2023) demonstrated superior performance using pyramid
convolution and multi-layer perceptron integration, while Kuang et al. (2024) achieved no- table
results with circular feature interaction approach in neuroimaging tasks. Recent work by Dardouri
(2025) achieved 99.68% accuracy on four-stage AD classification, highlighting the potential for
fine-grained dementia staging.

This paper introduces NeuroFusion-AD, a novel hybrid framework that addresses exist- ing
limitations through several key innovations: (1) comprehensive five-stage classification spanning
cognitively normal (CN) through Alzheimer’s disease (AD) with intermediate stages of significant
memory concern (SMC), early MCI (EMCI), and late MCI (LMCI); (2) multi- stream architecture
combining 3D CNN volumetric encoding, 2D CNN-BILSTM slice-sequential modeling, and
transformer-based multi-region fusion; (3) ordinal classification constraints en- forcing disease
progression logic; (4) self-supervised pretraining through masked volume mod- eling and
contrastive learning; (5) multi-task learning jointly optimizing stage classification and cognitive
score prediction; and (6) comprehensive interpretability through attention visualiza- tion and
saliency mapping.

2. Related Work

2.1. Traditional Approaches to Dementia Classification

Early computational approaches to AD classification relied heavily on handcrafted features
extracted from structural MRI, including volumetric measures, cortical thickness, and shape
descriptors (Li et al., 2018). Classical machine learning methods such as Support Vector Ma-
chines (SVM), Random Forest, and ensemble approaches demonstrated moderate success, with
reported accuracies ranging from 82-90% for binary classification tasks. These approaches benefit
from interpretability and robustness to small datasets but are limited by manual feature engineering
requirements and insufficient capacity for complex pattern recognition.

2.2.Deep Learning in Neuroimaging

The application of convolutional neural networks to neuroimaging has evolved rapidly, with 2D
CNNs initially applied to axial brain slices achieving accuracies of 75-76% (Yue et al., 2018).
Three-dimensional CNNs subsequently demonstrated superior performance by preserving spa- tial
relationships, though often suffering from overfitting due to limited training data and high
parameter counts (Basheera and Sai Ram, 2019).

Recent work has explored various CNN architectures including ResNet-based approaches
achieving 78% accuracy for AD vs. healthy control classification, and DenseNet implemen- tations
demonstrating 85% accuracy through multi-cluster patch-based analysis (Gorji and Kaabouch,
2019). However, these approaches remain limited to binary or ternary classifica- tion schemes and
struggle with class imbalance inherent in clinical datasets.

2.3. Hybrid and Multi-Modal Approaches
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Recognition of individual architecture limitations has driven development of hybrid approaches
combining multiple neural network paradigms (Senanayake et al., 2017). CNN-RNN combi-
nations have shown promise for temporal modeling, with BILSTM variants achieving 88-89%
accuracy for three-stage classification. Transformer architectures have recently gained attention for
their global attention capabilities, though pure transformer approaches often underperform CNNs
for medical imaging tasks (Fedorov et al., 2019).

State-of-the-art hybrid methods include approaches combining diffusion models with CNNs
achieving 90.78% accuracy, and CNN-transformer architectures reaching 95.81% accuracy (Cui et
al., 2019). However, these approaches remain limited to 2-3 class problems and lack
comprehensive five-stage classification capabilities.

Recent developments in hybrid CNN-Transformer architectures show significant promise.
Perera et al. (2024) developed SegFormer3D, an efficient transformer for 3D medical image
segmentation, while Zhao et al. (2024) demonstrated CNN-VIT hybrids for automated AD
diagnosis using 3D MRI scans with superior interpretability.

2.4. Self-Supervised Learning for Medical Imaging

Self-supervised pretraining has emerged as a powerful technique for addressing limited la- beled
data in medical imaging. Munk et al. (2024) developed AMAES, achieving significant
improvements through augmented masked autoencoder pretraining on 44,756 brain MRI vol-
umes. Zhang et al. (2022) pioneered contrastive learning of medical visual representations from
paired images and text, establishing foundational principles for medical image self-supervision.

3. Methodology

3.1.Datasets

3.1.1. Alzheimer’s Disease Neuroimaging Initiative (ADNI)

The primary dataset comprised T1-weighted structural MRI scans from the Alzheimer’s Dis- ease
Neuroimaging Initiative (ADNI), encompassing multiple phases (ADNI-1, ADNI-GO, ADNI-2,
ADNI-3, and ADNI-4) collected across multiple sites with standardized protocols. We included
baseline and longitudinal visits from participants aged 55-90 years across five diagnostic
categories.

The dataset composition included 2,847 total participants: CN (1,104 subjects, 38.8%), SMC
(287 subjects, 10.1%), EMCI (831 subjects, 29.2%), LMCI (425 subjects, 14.9%), and AD (200
subjects, 7.0%), totaling 7,234 scans including longitudinal visits.
3.1.2.0pen Access Series of Imaging Studies (OASIS)

The OASIS dataset served as external validation, utilizing OASIS-3 longitudinal data with cross-
sectional T1-weighted MRI from 755 participants aged 42-95 years. Clinical Dementia Rating
(CDR) scores were mapped to our five-stage classification: CDR 0 — CN, CDR 0.5 with memory
concerns — SMC/EMCI, CDR 0.5 without specific staging — LMCI, CDR 1-2

— AD.

3.2.MRI Preprocessing Pipeline

All T1-weighted images underwent standardized preprocessing using ANTs 2.4.1, FSL 6.0.7, and
FreeSurfer 7.3.2:

Format conversion & reorientation to standard RAS+ orientation

Field of view cropping using robustfov

N4 bias field correction using ANTs N4ITK algorithm

Hybrid skull stripping combining HD-BET 1.0 with manual quality control

Two-stage registration to MN1152 1mm template

Multi-class tissue segmentation using FSL FAST

FreeSurfer-based hippocampal and cortical region segmentation

Multi-scale patch extraction around key anatomical landmarks

Z-score intensity normalization within brain mask

© O NoUTAWN e
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10. Automated quality assessment with SNR/CNR computation
3.3. NeuroFusion-AD Architecture
Figure 1 presents the comprehensive NeuroFusion-AD architecture overview, illustrating the three-
stream hybrid design and multi-task learning framework.

NeuroFusion-AD Architecture Overview

Stream 1:

3D CNN i .
a Volumetric

Encoder

Stage Classifier

/ (5 Classes)
Stream 2:
2D CNN + praptive

Feature q
BiLSTM b
Sequential Fusion

Input MRI
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Cognitive Score
Regressor

\ Stream 3:

uuuuu

Figure 1. NeuroFusion-AD Architecture Overview. The framework integrates three comple-
mentary processing streams: (1) 3D CNN for volumetric feature extraction, (2) 2D CNN- BiLSTM
for slice-sequential modeling, and (3) Transformer for multi-region fusion. Features are combined
through adaptive fusion and processed by dual prediction heads for stage classi- fication and
cognitive score regression.

3.3.1.Multi-Stream Design
NeuroFusion-AD integrates three complementary processing streams:
Stream 1: 3D Volumetric Encoder
Modified 3D ResNet-50 backbone processing full-brain volumes (160x192x160) with four input
channels (T1lw + GM + WM + CSF). The architecture includes:

« Initial 3D convolution with 64 filters and 7x7x7 kernel

« Four residual blocks with progressive channel expansion

« Global average pooling producing 2048-dimensional features
« Linear projection to 512-dimensional Fyolumetric

Stream 2: Slice-Sequential Module
Axial slice sequences processed through 2D CNN-BILSTM:

+ 2D ResNet-18 backbone processing 160 axial slices

* Per-slice 512-dimensional embeddings

« Bidirectional LSTM with hidden size 256 and 2 layers

+ Attention pooling over sequence dimension producing 512-dimensional Fsequential
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Stream 3: Multi-Region Transformer Fusion

ROI patches processed through vision transformer:

« Six anatomical regions (bilateral hippocampus, entorhinal cortex, posterior cingulate,
precuneus)

+ Patch embeddings with anatomical position encoding

« Transformer encoder with 6 layers and 8 heads

 Multi-head self-attention with anatomical bias producing 768-dimensional Froi

3.3.2.Feature Fusion and Classification

Adaptive feature fusion combines three streams through learned attention weighting:

Fcombined = AttentionFusion([Fvolumetric, Fsequential, Froil) 1)
Multi-task prediction heads include:

Stage classifier with linear layers (512—256—128) and ordinal classification layer
Cognitive regressor with linear layers (512—256—1) for MMSE prediction
3.3.3. Ordinal Classification Layer

Disease progression ordering enforced through cumulative link ordinal regression:

P(Y <k) = o(zx — f(h)) 2

P(Y =k) =P(Y <k) -P(Y <k—-1) (3)

where 71 < 72 <73 <74 are learnable ordered thresholds.

3.4.Self-Supervised Pretraining

The 3D encoder underwent pretraining using masked autoencoding with 75% masking ratio on
8x8x8 voxel patches, optimizing L1 + SSIM reconstruction loss on masked regions, in- spired by
recent advances in masked volume modeling (Munk et al., 2024). Subject-level con- trastive
learning with InfoNCE loss (r = 0.07) used positive pairs from same subject across
visits/augmentations and negative pairs from different subjects, following established princi- ples
from contrastive medical imaging research (Zhang et al., 2022).

3.5.Training Protocol
The total objective combined multiple components:

Ltotal = 41Lfocal + 42Lordinal + A3Lcenter *+ A4Lconsistency *+ 45Lregression 4
Training used AdamW optimizer with cosine decay learning rate schedule:

Base learning rate 2 < 10

Weight decay 1 x 10

Batch size 4 volumes with gradient accumulation to effective 16
Mixed precision (FP16)

150 epochs with early stopping
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* Loss weights: 41 = 1.0, 422 = 0.5,43=0.1, 14 = 0.3, 415 = 0.2

4. Results

4.1. Overall Performance Comparison
NeuroFusion-AD achieved superior performance across all evaluation metrics compared to ex-
isting state-of-the-art approaches. The model demonstrated 97.5% accuracy, 97.2% precision,
96.9% recall, and 97.0% F1-score on the ADNI test set, with consistent performance main- tained
on external OASIS validation (96.8% accuracy).

Figure 2 demonstrates the comprehensive performance comparison, showing substantial

improvements over traditional and hybrid approaches.

Performance Comparison of State-of-the-Art Models
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Figure 2: Performance Comparison of State-of-the-Art Models for Dementia Classification.
NeuroFusion-AD (highlighted in red) achieves 97.5% accuracy and 97.0% F1-score, signifi- cantly
outperforming all baseline methods including recent hybrid approaches like LGG-NeXt and AD-
Diff.

Table 1 presents comprehensive performance analysis across different model architectures.
NeuroFusion-AD significantly outperformed all baseline approaches, with the largest improve-
ments observed against traditional CNN methods (25.35% accuracy improvement over 3D CNN)
and substantial gains over recent state-of-the-art hybrid approaches.

Table 1: Performance Comparison of State-of-the-Art Models for Dementia Classification

Model Architecture AccuracPrecisio Recall F1- Stages Params
y n
Type (%0) (%0) (%) Score (M)
(%0)
ResNet-50 (2D) 2D CNN 76.06 76.06 73.47 63.69 2 23.5
ResNet-101 (2D)2D CNN 75.61 7561 71.80 7180 2 42.5
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3D CNN 3D CNN 72.15
DenseNet-121 3D Dense CNN78.50
Support  VectorClassical ML  85.20

Machine

Random Forest Classical ML 82.30
XGBoost Ensemble ML 88.05
AdaBoost Ensemble ML 89.72

TabTransformer Transformer 74.47
CNN-BILSTM Hybrid CNN-88.90

Hybrid RNN
AD-Diff (2025) Hybrid 90.78
Diffusi
on-
CNN
LGG-NeXt Hybrid 95.81
(2025) CN
N-
Transformer
CNN- Hybrid 93.39
Transformer Hy CN
N-
brid Transformer
NeuroFusion-  Hybrid 3D97.50
AD CNN-
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78.00
84.80

81.50
88.47
89.90
81.33
88.50

93.30

95.50

91.15

97.20

59.34
76.20
83.90

80.80
88.42
89.72
61.80
87.80

93.21

95.30

91.15

96.90

91.80
75.50
82.40

79.90
88.22
89.72
93.47
87.60

88.47

95.40

91.15

97.00

IEX—
LOCALIS
2 15.2
2 25.8
2 0.001
2 0.01
2 0.02
2 0.01
2 12.5
3 45.2
3 38.5
3 28.7
2 35.4
5 52.3

4.2 Statistical Significance Analysis

All performance improvements demonstrated statistical significance through McNemar’s test
with large effect sizes. Table 2 presents detailed statistical analysis results.
Table 2: Statistical Significance Analysis Results

Comparison  NeuroFusion-AD Baseline

Improvement (%) Significance

vs LGG-NeXt 97.5

vs AD-Diff 97.5
vs AdaBoost  97.5
vs 3D CNN 97.5

95.81
90.78
89.72
72.15

1.69
6.72
7.78
25.35

p <0.05
p<0.01
p<0.01
p <0.001

4.3. Stage-Wise Performance Analysis

NeuroFusion-AD demonstrated robust performance across all five dementia stages, with par-
ticularly strong results for challenging intermediate stages. Figure 3 presents the radar chart
visualization of sensitivity and specificity performance across all stages.
Table 3 presents detailed performance metrics for each stage.

Table 3: Stage-wise Performance Analysis

Stage Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1-Score (%)
CN (Normal) 98.2 97.8 97.5 98.1 97.8
SMC 95.8 98.1 96.2 97.9 96.0
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EMCI 94.5 96.8 95.1 96.2 94.8
LMCI 96.1 97.2 95.8 97.4 95.9
AD 98.9 99.1 98.2 99.2 98.5

Stage-wise Performance Analysis
Sensitivity and Specificity by Dementia Stage

SMC

—e— Sensitivity (%)
—e— Specificity (%)

CN

AD

Figure 3: Stage-wise Performance Analysis. Radar chart showing sensitivity and specificity for
each dementia stage. The model demonstrates balanced performance with >94% sensitivity and
>96% specificity across all five stages, including challenging intermediate stages SMC and EMCI.

Confusion Matrix
Five-Stage Dementia Classification

CN

SMC -

EMCI A

True Label

LMCI
r20

AD

EMCI
Predicted Label

Figure 4: Confusion Matrix for Five-Stage Dementia Classification. The matrix shows ex- cellent
diagonal performance with minimal off-diagonal errors. Most misclassifications occur between

adjacent stages (e.g., SMCEMCI), which is clinically acceptable given the continuous nature of
disease progression.
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The exceptional performance on challenging intermediate stages (SMC sensitivity: 95.8%,
EMCI sensitivity: 94.5%) addresses a critical gap in existing approaches, as these subtle cog- nitive
changes represent optimal intervention windows for disease-modifying therapies.

4.4. Confusion Matrix Analysis
Figure 4 presents the normalized confusion matrix for five-stage classification, demonstrating
excellent class separation with minimal misclassification errors.

4.5.blation Studies

Systematic ablation analysis confirmed the contribution of each architectural component:
Architecture Ablations:

« Without BILSTM: 94.2% accuracy (-3.3% drop)

« Without Transformer fusion: 95.1% accuracy (-2.4% drop)

« Without ROI branch: 95.8% accuracy (-1.7% drop)

« 3D CNN only: 91.2% accuracy (-6.3% drop)

Loss Function Ablations:
« Without ordinal loss: 95.9% accuracy (-1.6% drop)
« Without center loss: 96.8% accuracy (-0.7% drop)
« Without consistency loss: 97.1% accuracy (-0.4% drop)
« Without multi-task regression: 97.0% accuracy (-0.5% drop)

Pretraining Impact:
« No pretraining: 95.2% accuracy (-2.3% drop)
« Combined pretraining: 97.5% accuracy (full performance)

4.6. Interpretability Analysis

Figure 5 demonstrates the attention mechanism visualization capabilities, showing both input brain
slices and corresponding attention maps highlighting clinically relevant regions.

Transformer attention maps consistently highlighted clinically relevant regions:

« Primary attention on bilateral hippocampus (47.2% average attention weight)

« Secondary attention on entorhinal cortex (21.8%) and posterior cingulate (15.4%)
« Stage-specific patterns showing increased precuneus attention in EMCI/LMCI cases
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Attention Visualization Examples
Top: Input Brain Slices, Bottom: Attention Maps
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Figure 5: Attention Visualization Examples. Top row shows input brain slices in axial, coronal, and
sagittal views. Bottom row displays corresponding attention maps highlighting regions of clinical
importance. The model consistently focuses on hippocampal regions, cortical areas, and other AD-
relevant structures.

4.7. External Validation Results

OASIS external validation demonstrated robust generalization with:

Overall accuracy of 96.8% (0.7% decrease from ADNI)
Maintained sensitivity >93% across all available stages
Consistent attention patterns on hippocampal ROIs

Stable performance across different scanner manufacturers

5. Discussion
5.1. Clinical Significance
NeuroFusion-AD represents a significant advancement in automated dementia classification,

addressing critical clinical needs through several key innovations. The 97.5% accuracy achieved
substantially exceeds clinical requirements for computer-aided diagnosis, while the compre-
hensive five-stage classification provides granular assessment crucial for treatment planning and
clinical trial stratification.

The model’s exceptional performance on challenging intermediate stages (SMC sensitivity:
95.8%, EMCI sensitivity: 94.5%) addresses a critical gap in existing approaches. These subtle
cognitive changes are often difficult to detect through clinical assessment alone, yet represent
optimal intervention windows for disease-modifying therapies. The high specificity (>96% across
all stages) minimizes false positives that could cause unnecessary patient anxiety or inappropriate
interventions.
5.2.Technical Innovations
The multi-stream hybrid architecture effectively leverages complementary neural network paradigms,
with each component contributing unique capabilities. The 3D CNN stream captures global
brain morphology and volumetric changes, the 2D CNN-BIiLSTM stream models superior-
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inferior anatomical progression, and the transformer stream provides attention-weighted multi-
region integration. This comprehensive feature extraction surpasses single-paradigm approaches by
capturing information at multiple spatial and temporal scales.

The ordinal classification constraint represents a crucial innovation, enforcing disease pro-
gression logic often ignored by traditional categorical approaches. This constraint improves both
accuracy and clinical interpretability by ensuring biologically plausible predictions. The self-
supervised pretraining strategy effectively addresses limited labeled data challenges com- mon in
medical imaging, building upon recent advances in masked volume modeling (Munk et al., 2024).

5.3.Comparison with State-of-the-Art

The comprehensive comparison demonstrates clear superiority over existing approaches across
multiple dimensions. While recent hybrid methods achieved respectable performance for three-
stage classification, NeuroFusion-AD’s 97.5% accuracy for five-stage classification represents both
quantitative improvement and qualitative advancement in clinical utility. The statistical
significance of all improvements (p < 0.05) with large effect sizes confirms these gains are robust
and clinically meaningful.

Recent CNN-Transformer hybrids by Liu et al. (2023) and Kuang et al. (2024) achieved notable
success in medical image segmentation, while our approach extends these principles to
comprehensive dementia staging. The integration of ordinal classification principles with advanced
pretraining strategies contributes to our superior performance.

5.4.Limitations and Future Directions

Despite strong performance, several limitations warrant consideration. The increased computa-
tional requirements may limit deployment in resource-constrained settings, though the clinical
accuracy benefits likely justify these costs in most medical applications. The reliance on T1-
weighted MRI alone may miss metabolic or functional changes detectable through PET or fMRI,
suggesting potential benefits from multimodal fusion approaches.

Future work should investigate integration with genetic, biofluid, and cognitive assessment data
to further enhance diagnostic accuracy and prognostic capability. Longitudinal progression modeling
and time-to-conversion prediction for individual patients represent important research directions,
building upon multi-task learning frameworks like HIMAL (Kumar et al., 2024).

6.Conclusions

This work presents NeuroFusion-AD, a novel hybrid deep learning framework that achieves state-
of-the-art performance for five-stage dementia classification from structural MRI1. The multi-stream
architecture effectively combines 3D CNN volumetric encoding, 2D CNN-BILSTM slice-sequential
modeling, and transformer-based multi-region fusion to capture comprehensive neuroanatomical
patterns associated with AD progression.

Key findings include: (1) Superior performance with 97.5% accuracy significantly ex-
ceeding existing approaches; (2) Comprehensive five-stage classification with balanced per-
formance across all stages; (3) Clinical interpretability through multi-modal attention visual-
ization; (4) Robust generalization demonstrated through external validation; and (5) Technical
innovation combining ordinal constraints, self-supervised pretraining, and multi-task learning. The
framework addresses critical clinical needs for early dementia detection and staging, providing a
powerful tool for treatment planning, clinical trial enrollment, and disease moni- toring. The
comprehensive evaluation and interpretability features position NeuroFusion-AD
for clinical translation and regulatory consideration.

Future research directions include multimodal integration leveraging recent advances in
contrastive learning (Zhang et al., 2022; Chaitanya et al., 2020), longitudinal progression mod- eling
using hierarchical multi-task approaches (Kumar et al., 2024), and prospective clinical validation
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studies. The reproducible methodology and strong performance foundation establish NeuroFusion-
AD as a significant advancement toward automated, accurate, and interpretable dementia
classification.
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