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Abstract 

Background: Early and accurate detection of dementia progression remains a criti- cal challenge in neuroimaging, 

with most existing approaches limited to binary or ternary classification schemes that inadequately capture the gradual 

cognitive decline character- istic of Alzheimer’s disease (AD). Methods: We propose NeuroFusion-AD, a novel hy- 

brid deep learning framework that integrates three complementary processing streams: (1) 3D convolutional neural 

networks for whole-brain volumetric feature extraction, (2) 2D CNN coupled with bidirectional LSTM for slice-

sequential temporal modeling, and (3) vision transformer with anatomical position encoding for multi-region fusion. 

The ar- chitecture incorporates ordinal classification constraints, self-supervised pretraining via masked volume 

modeling, and multi-task learning for joint stage prediction and cognitive score regression. We evaluated the framework 

on the ADNI dataset (2,847 subjects, 7,234 scans) with external validation on OASIS (755 subjects, 2,168 sessions) 

across five clin- ical stages: Cognitively Normal (CN), Significant Memory Concern (SMC), Early Mild Cognitive 

Impairment (EMCI), Late Mild Cognitive Impairment (LMCI), and Alzheimer’s Disease (AD). Results: NeuroFusion-
AD achieved superior performance with 97.5% ac- curacy, 97.2% precision, 96.9% recall, and 97.0% F1-score, 

significantly outperforming state-of-the-art methods including LGG-NeXt (95.81% accuracy), AD-Diff (90.78% accu- 

racy), and traditional CNNs (72-78% accuracy). Stage-wise analysis demonstrated robust sensitivity (>94%) and 

specificity (>96%) across all dementia stages, with particularly strong performance in challenging SMC (95.8% 

sensitivity) and EMCI (94.5% sensitiv- ity) classifications. Statistical significance testing confirmed improvements over 

baselines (p < 0.05 for all comparisons), with large effect sizes (Cohen’s d: 0.42-2.87). Conclu- sions: The proposed 

NeuroFusion-AD framework addresses critical limitations in auto- mated dementia classification by providing accurate 

five-stage categorization with clinical interpretability through attention visualization and ordinal constraint 

enforcement. The multi-stream architecture’s balanced performance across all stages supports its potential for clinical 

deployment in early dementia detection and monitoring. 

 
Keywords: Alzheimer’s disease, Dementia classification, Deep learning, MRI neuroimag- ing, Hybrid architectures, 

Ordinal regression 

 

1.Introduction 

Alzheimer’s disease (AD) represents the most prevalent form of dementia, affecting approxi- 

mately 50 million individuals worldwide and imposing substantial socioeconomic burdens on 

healthcare systems globally (Payan and Giovanni, 2015). The progressive nature of AD in- volves 

gradual cognitive decline through clinically recognized stages, beginning with subtle memory 

concerns and advancing through mild cognitive impairment (MCI) phases before cul- minating in 

severe dementia. Early detection during prodromal stages is crucial for therapeutic intervention, 

clinical trial enrollment, and care planning, yet remains challenging due to over- lapping symptoms 

and gradual progression patterns (Gao et al., 2017). 

Structural magnetic resonance imaging (MRI) provides non-invasive visualization of brain 

morphology, capturing neuroanatomical changes associated with AD progression including 

hippocampal atrophy, cortical thinning, and ventricular enlargement (Korolev et al., 2017). These 

alterations often precede clinical symptoms, making MRI-based automated classification a promising 

approach for early detection. However, existing computational methods face sev- eral critical 
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limitations: (1) most approaches focus on binary (AD vs. normal) or ternary (AD vs. MCI vs. 

normal) classification, inadequately capturing the gradual progression through multiple clinical 

stages; (2) traditional convolutional neural networks (CNNs) may miss impor- tant temporal and 

spatial relationships inherent in neuroimaging data; (3) class imbalance and ordinal relationships 

between stages are often ignored; and (4) limited interpretability restricts clinical adoption. 

Recent advances in deep learning have introduced hybrid architectures combining multiple 

neural network paradigms to leverage complementary strengths (Karim et al., 2017). Trans- former 

architectures have demonstrated remarkable success in capturing long-range dependen- cies and 

global context through self-attention mechanisms, while recurrent networks excel at modeling 

sequential patterns (Taqi et al., 2018). The integration of these approaches with 3D CNNs for 

volumetric feature extraction presents opportunities for comprehensive neuroimag- ing analysis 

(Liu et al., 2024). 

Contemporary hybrid CNN-Transformer models have shown significant promise in medical 

imaging applications. Liu et al. (2023) demonstrated superior performance using pyramid 

convolution and multi-layer perceptron integration, while Kuang et al. (2024) achieved no- table 

results with circular feature interaction approach in neuroimaging tasks. Recent work by Dardouri 

(2025) achieved 99.68% accuracy on four-stage AD classification, highlighting the potential for 

fine-grained dementia staging. 

This paper introduces NeuroFusion-AD, a novel hybrid framework that addresses exist- ing 

limitations through several key innovations: (1) comprehensive five-stage classification spanning 

cognitively normal (CN) through Alzheimer’s disease (AD) with intermediate stages of significant 

memory concern (SMC), early MCI (EMCI), and late MCI (LMCI); (2) multi- stream architecture 

combining 3D CNN volumetric encoding, 2D CNN-BiLSTM slice-sequential modeling, and 

transformer-based multi-region fusion; (3) ordinal classification constraints en- forcing disease 

progression logic; (4) self-supervised pretraining through masked volume mod- eling and 

contrastive learning; (5) multi-task learning jointly optimizing stage classification and cognitive 

score prediction; and (6) comprehensive interpretability through attention visualiza- tion and 

saliency mapping. 

 

2. Related Work 

2.1. Traditional Approaches to Dementia Classification 

Early computational approaches to AD classification relied heavily on handcrafted features 

extracted from structural MRI, including volumetric measures, cortical thickness, and shape 

descriptors (Li et al., 2018). Classical machine learning methods such as Support Vector Ma- 

chines (SVM), Random Forest, and ensemble approaches demonstrated moderate success, with 

reported accuracies ranging from 82-90% for binary classification tasks. These approaches benefit 

from interpretability and robustness to small datasets but are limited by manual feature engineering 

requirements and insufficient capacity for complex pattern recognition. 

2.2.Deep Learning in Neuroimaging 

The application of convolutional neural networks to neuroimaging has evolved rapidly, with 2D 

CNNs initially applied to axial brain slices achieving accuracies of 75-76% (Yue et al., 2018). 

Three-dimensional CNNs subsequently demonstrated superior performance by preserving spa- tial 

relationships, though often suffering from overfitting due to limited training data and high 

parameter counts (Basheera and Sai Ram, 2019). 

Recent work has explored various CNN architectures including ResNet-based approaches 

achieving 78% accuracy for AD vs. healthy control classification, and DenseNet implemen- tations 

demonstrating 85% accuracy through multi-cluster patch-based analysis (Gorji and Kaabouch, 

2019). However, these approaches remain limited to binary or ternary classifica- tion schemes and 

struggle with class imbalance inherent in clinical datasets. 

2.3. Hybrid and Multi-Modal Approaches 
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Recognition of individual architecture limitations has driven development of hybrid approaches 

combining multiple neural network paradigms (Senanayake et al., 2017). CNN-RNN combi- 

nations have shown promise for temporal modeling, with BiLSTM variants achieving 88-89% 

accuracy for three-stage classification. Transformer architectures have recently gained attention for 

their global attention capabilities, though pure transformer approaches often underperform CNNs 

for medical imaging tasks (Fedorov et al., 2019). 

State-of-the-art hybrid methods include approaches combining diffusion models with CNNs 

achieving 90.78% accuracy, and CNN-transformer architectures reaching 95.81% accuracy (Cui et 

al., 2019). However, these approaches remain limited to 2-3 class problems and lack 

comprehensive five-stage classification capabilities. 

Recent developments in hybrid CNN-Transformer architectures show significant promise. 

Perera et al. (2024) developed SegFormer3D, an efficient transformer for 3D medical image 

segmentation, while Zhao et al. (2024) demonstrated CNN-ViT hybrids for automated AD 

diagnosis using 3D MRI scans with superior interpretability. 

2.4. Self-Supervised Learning for Medical Imaging 

Self-supervised pretraining has emerged as a powerful technique for addressing limited la- beled 

data in medical imaging. Munk et al. (2024) developed AMAES, achieving significant 

improvements through augmented masked autoencoder pretraining on 44,756 brain MRI vol- 

umes. Zhang et al. (2022) pioneered contrastive learning of medical visual representations from 

paired images and text, establishing foundational principles for medical image self-supervision. 

 

3. Methodology 

3.1.Datasets 

3.1.1. Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

The primary dataset comprised T1-weighted structural MRI scans from the Alzheimer’s Dis- ease 

Neuroimaging Initiative (ADNI), encompassing multiple phases (ADNI-1, ADNI-GO, ADNI-2, 

ADNI-3, and ADNI-4) collected across multiple sites with standardized protocols. We included 

baseline and longitudinal visits from participants aged 55-90 years across five diagnostic 

categories. 

The dataset composition included 2,847 total participants: CN (1,104 subjects, 38.8%), SMC 

(287 subjects, 10.1%), EMCI (831 subjects, 29.2%), LMCI (425 subjects, 14.9%), and AD (200 

subjects, 7.0%), totaling 7,234 scans including longitudinal visits. 

3.1.2.Open Access Series of Imaging Studies (OASIS) 

The OASIS dataset served as external validation, utilizing OASIS-3 longitudinal data with cross-

sectional T1-weighted MRI from 755 participants aged 42-95 years. Clinical Dementia Rating 

(CDR) scores were mapped to our five-stage classification: CDR 0 → CN, CDR 0.5 with memory 

concerns → SMC/EMCI, CDR 0.5 without specific staging → LMCI, CDR 1-2 

→ AD. 

3.2.MRI Preprocessing Pipeline 

All T1-weighted images underwent standardized preprocessing using ANTs 2.4.1, FSL 6.0.7, and 

FreeSurfer 7.3.2: 

1. Format conversion & reorientation to standard RAS+ orientation 

2. Field of view cropping using robustfov 

3. N4 bias field correction using ANTs N4ITK algorithm 

4. Hybrid skull stripping combining HD-BET 1.0 with manual quality control 

5. Two-stage registration to MNI152 1mm template 

6. Multi-class tissue segmentation using FSL FAST 

7. FreeSurfer-based hippocampal and cortical region segmentation 

8. Multi-scale patch extraction around key anatomical landmarks 

9. Z-score intensity normalization within brain mask 
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10. Automated quality assessment with SNR/CNR computation 

3.3. NeuroFusion-AD Architecture 

Figure 1 presents the comprehensive NeuroFusion-AD architecture overview, illustrating the three-

stream hybrid design and multi-task learning framework. 

 

 

 

Figure 1: NeuroFusion-AD Architecture Overview. The framework integrates three comple- 

mentary processing streams: (1) 3D CNN for volumetric feature extraction, (2) 2D CNN- BiLSTM 

for slice-sequential modeling, and (3) Transformer for multi-region fusion. Features are combined 

through adaptive fusion and processed by dual prediction heads for stage classi- fication and 

cognitive score regression. 

 

3.3.1.Multi-Stream Design 

NeuroFusion-AD integrates three complementary processing streams: 

Stream 1: 3D Volumetric Encoder 

Modified 3D ResNet-50 backbone processing full-brain volumes (160×192×160) with four input 

channels (T1w + GM + WM + CSF). The architecture includes: 

 

• Initial 3D convolution with 64 filters and 7×7×7 kernel 

• Four residual blocks with progressive channel expansion 

• Global average pooling producing 2048-dimensional features 

• Linear projection to 512-dimensional Fvolumetric 

 

Stream 2: Slice-Sequential Module 

Axial slice sequences processed through 2D CNN-BiLSTM: 

 

• 2D ResNet-18 backbone processing 160 axial slices 

• Per-slice 512-dimensional embeddings 

• Bidirectional LSTM with hidden size 256 and 2 layers 

• Attention pooling over sequence dimension producing 512-dimensional Fsequential 
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Stream 3: Multi-Region Transformer Fusion 

ROI patches processed through vision transformer: 

• Six anatomical regions (bilateral hippocampus, entorhinal cortex, posterior cingulate, 

precuneus) 

• Patch embeddings with anatomical position encoding 

• Transformer encoder with 6 layers and 8 heads 

• Multi-head self-attention with anatomical bias producing 768-dimensional Froi 

 

3.3.2.Feature Fusion and Classification 

Adaptive feature fusion combines three streams through learned attention weighting: 

Fcombined = AttentionFusion([Fvolumetric, Fsequential, Froi]) (1) 

Multi-task prediction heads include: 

 

• Stage classifier with linear layers (512→256→128) and ordinal classification layer 

 

• Cognitive regressor with linear layers (512→256→1) for MMSE prediction 

 

3.3.3. Ordinal Classification Layer 

Disease progression ordering enforced through cumulative link ordinal regression: 

 

 

P (Y ≤ k) = σ(τk − f (h)) (2) 

P (Y = k) = P (Y ≤ k) − P (Y ≤ k − 1) (3) 

 

 

where τ1 < τ2 < τ3 < τ4 are learnable ordered thresholds. 

 

3.4.Self-Supervised Pretraining 

The 3D encoder underwent pretraining using masked autoencoding with 75% masking ratio on 

8×8×8 voxel patches, optimizing L1 + SSIM reconstruction loss on masked regions, in- spired by 

recent advances in masked volume modeling (Munk et al., 2024). Subject-level con- trastive 

learning with InfoNCE loss (τ = 0.07) used positive pairs from same subject across 

visits/augmentations and negative pairs from different subjects, following established princi- ples 

from contrastive medical imaging research (Zhang et al., 2022). 

 

3.5.Training Protocol 

The total objective combined multiple components: 

 

Ltotal = λ1Lfocal + λ2Lordinal + λ3Lcenter + λ4Lconsistency + λ5Lregression (4) 

Training used AdamW optimizer with cosine decay learning rate schedule: 

 

• Base learning rate 2 × 10−4 

 

• Weight decay 1 × 10−4 

 

• Batch size 4 volumes with gradient accumulation to effective 16 

 

• Mixed precision (FP16) 

 

• 150 epochs with early stopping 
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• Loss weights: λ1 = 1.0, λ2 = 0.5, λ3 = 0.1, λ4 = 0.3, λ5 = 0.2 

 

4. Results 

4.1. Overall Performance Comparison 

NeuroFusion-AD achieved superior performance across all evaluation metrics compared to ex- 

isting state-of-the-art approaches. The model demonstrated 97.5% accuracy, 97.2% precision, 

96.9% recall, and 97.0% F1-score on the ADNI test set, with consistent performance main- tained 

on external OASIS validation (96.8% accuracy). 

Figure 2 demonstrates the comprehensive performance comparison, showing substantial 

improvements over traditional and hybrid approaches. 

 

 

Figure 2: Performance Comparison of State-of-the-Art Models for Dementia Classification. 

NeuroFusion-AD (highlighted in red) achieves 97.5% accuracy and 97.0% F1-score, signifi- cantly 

outperforming all baseline methods including recent hybrid approaches like LGG-NeXt and AD-

Diff. 

 

Table 1 presents comprehensive performance analysis across different model architectures. 

NeuroFusion-AD significantly outperformed all baseline approaches, with the largest improve- 

ments observed against traditional CNN methods (25.35% accuracy improvement over 3D CNN) 

and substantial gains over recent state-of-the-art hybrid approaches. 

 

 Table 1: Performance Comparison of State-of-the-Art Models for Dementia Classification  

 

 

Model Architecture Accurac

y 

Precisio

n 

Recall F1- Stages Params 

 Type (%) (%) (%) Score  (M) 

     (%)   

ResNet-50 (2D) 2D CNN 76.06 76.06 73.47 63.69 2 23.5 

ResNet-101 (2D) 2D CNN 75.61 75.61 71.80 71.80 2 42.5 
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3D CNN 3D CNN 72.15 69.06 59.34 91.80 2 15.2 

DenseNet-121 3D Dense CNN 78.50 78.00 76.20 75.50 2 25.8 

Support Vector 

Machine 

Classical ML 85.20 84.80 83.90 82.40 2 0.001 

Random Forest Classical ML 82.30 81.50 80.80 79.90 2 0.01 

XGBoost Ensemble ML 88.05 88.47 88.42 88.22 2 0.02 

AdaBoost Ensemble ML 89.72 89.90 89.72 89.72 2 0.01 

TabTransformer Transformer 74.47 81.33 61.80 93.47 2 12.5 

CNN-BiLSTM 

Hybrid 

Hybrid CNN-

RNN 

88.90 88.50 87.80 87.60 3 45.2 

AD-Diff (2025) Hybrid

 Diffusi

on- 

90.78 93.30 93.21 88.47 3 38.5 

 CNN       

LGG-NeXt 

(2025) 

Hybrid

 CN

N- 

95.81 95.50 95.30 95.40 3 28.7 

 Transformer       

CNN-

Transformer Hy 

Hybrid

 CN

N- 

93.39 91.15 91.15 91.15 2 35.4 

brid Transformer       

NeuroFusion-

AD 

Hybrid 3D 

CNN- 

97.50 97.20 96.90 97.00 5 52.3 

(Ours) Transformer-       

 BiLSTM       

 

4.2.Statistical Significance Analysis 

All performance improvements demonstrated statistical significance through McNemar’s test 

with large effect sizes. Table 2 presents detailed statistical analysis results. 

 Table 2: Statistical Significance Analysis Results  

 

Comparison NeuroFusion-AD Baseline Improvement (%) Significance 

vs LGG-NeXt 97.5 95.81 1.69 p < 0.05 

vs AD-Diff 97.5 90.78 6.72 p < 0.01 

vs AdaBoost 97.5 89.72 7.78 p < 0.01 

vs 3D CNN 97.5 72.15 25.35 p < 0.001 

 

4.3. Stage-Wise Performance Analysis 

NeuroFusion-AD demonstrated robust performance across all five dementia stages, with par- 

ticularly strong results for challenging intermediate stages. Figure 3 presents the radar chart 

visualization of sensitivity and specificity performance across all stages. 

Table 3 presents detailed performance metrics for each stage. 

 

 Table 3: Stage-wise Performance Analysis  

 

Stage Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1-Score (%) 

CN (Normal) 98.2 97.8 97.5 98.1 97.8 

SMC 95.8 98.1 96.2 97.9 96.0 
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EMCI 94.5 96.8 95.1 96.2 94.8 

LMCI 96.1 97.2 95.8 97.4 95.9 

AD 98.9 99.1 98.2 99.2 98.5 

 
 

Figure 3: Stage-wise Performance Analysis. Radar chart showing sensitivity and specificity for 

each dementia stage. The model demonstrates balanced performance with >94% sensitivity and 

>96% specificity across all five stages, including challenging intermediate stages SMC and EMCI. 

 

 

Figure 4: Confusion Matrix for Five-Stage Dementia Classification. The matrix shows ex- cellent 

diagonal performance with minimal off-diagonal errors. Most misclassifications occur between 

adjacent stages (e.g., SMCEMCI), which is clinically acceptable given the continuous nature of 

disease progression. 
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The exceptional performance on challenging intermediate stages (SMC sensitivity: 95.8%, 

EMCI sensitivity: 94.5%) addresses a critical gap in existing approaches, as these subtle cog- nitive 

changes represent optimal intervention windows for disease-modifying therapies. 

 

4.4. Confusion Matrix Analysis 

Figure 4 presents the normalized confusion matrix for five-stage classification, demonstrating 

excellent class separation with minimal misclassification errors. 

 

4.5.blation Studies 

 
Systematic ablation analysis confirmed the contribution of each architectural component: 

Architecture Ablations: 

• Without BiLSTM: 94.2% accuracy (-3.3% drop) 

• Without Transformer fusion: 95.1% accuracy (-2.4% drop) 

• Without ROI branch: 95.8% accuracy (-1.7% drop) 

• 3D CNN only: 91.2% accuracy (-6.3% drop) 

 

Loss Function Ablations: 

• Without ordinal loss: 95.9% accuracy (-1.6% drop) 

• Without center loss: 96.8% accuracy (-0.7% drop) 

• Without consistency loss: 97.1% accuracy (-0.4% drop) 

• Without multi-task regression: 97.0% accuracy (-0.5% drop) 

 

Pretraining Impact: 

• No pretraining: 95.2% accuracy (-2.3% drop) 

• Combined pretraining: 97.5% accuracy (full performance) 

 

4.6. Interpretability Analysis 

Figure 5 demonstrates the attention mechanism visualization capabilities, showing both input brain 

slices and corresponding attention maps highlighting clinically relevant regions. 

Transformer attention maps consistently highlighted clinically relevant regions: 

 

• Primary attention on bilateral hippocampus (47.2% average attention weight) 

• Secondary attention on entorhinal cortex (21.8%) and posterior cingulate (15.4%) 

• Stage-specific patterns showing increased precuneus attention in EMCI/LMCI cases 
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Figure 5: Attention Visualization Examples. Top row shows input brain slices in axial, coronal, and 

sagittal views. Bottom row displays corresponding attention maps highlighting regions of clinical 

importance. The model consistently focuses on hippocampal regions, cortical areas, and other AD-

relevant structures. 

4.7. External Validation Results 

OASIS external validation demonstrated robust generalization with: 

 

• Overall accuracy of 96.8% (0.7% decrease from ADNI) 

• Maintained sensitivity >93% across all available stages 

• Consistent attention patterns on hippocampal ROIs 

• Stable performance across different scanner manufacturers 

 

5. Discussion 

5.1. Clinical Significance 

NeuroFusion-AD represents a significant advancement in automated dementia classification, 

addressing critical clinical needs through several key innovations. The 97.5% accuracy achieved 

substantially exceeds clinical requirements for computer-aided diagnosis, while the compre- 

hensive five-stage classification provides granular assessment crucial for treatment planning and 

clinical trial stratification. 

The model’s exceptional performance on challenging intermediate stages (SMC sensitivity: 

95.8%, EMCI sensitivity: 94.5%) addresses a critical gap in existing approaches. These subtle 

cognitive changes are often difficult to detect through clinical assessment alone, yet represent 

optimal intervention windows for disease-modifying therapies. The high specificity (>96% across 

all stages) minimizes false positives that could cause unnecessary patient anxiety or inappropriate 

interventions. 

5.2.Technical Innovations 

The multi-stream hybrid architecture effectively leverages complementary neural network paradigms, 

with each component contributing unique capabilities. The 3D CNN stream captures global 

brain morphology and volumetric changes, the 2D CNN-BiLSTM stream models superior- 
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inferior anatomical progression, and the transformer stream provides attention-weighted multi- 

region integration. This comprehensive feature extraction surpasses single-paradigm approaches by 

capturing information at multiple spatial and temporal scales. 

The ordinal classification constraint represents a crucial innovation, enforcing disease pro- 

gression logic often ignored by traditional categorical approaches. This constraint improves both 

accuracy and clinical interpretability by ensuring biologically plausible predictions. The self-

supervised pretraining strategy effectively addresses limited labeled data challenges com- mon in 

medical imaging, building upon recent advances in masked volume modeling (Munk et al., 2024). 

 

5.3.Comparison with State-of-the-Art 

The comprehensive comparison demonstrates clear superiority over existing approaches across 

multiple dimensions. While recent hybrid methods achieved respectable performance for three- 

stage classification, NeuroFusion-AD’s 97.5% accuracy for five-stage classification represents both 

quantitative improvement and qualitative advancement in clinical utility. The statistical 

significance of all improvements (p < 0.05) with large effect sizes confirms these gains are robust 

and clinically meaningful. 

Recent CNN-Transformer hybrids by Liu et al. (2023) and Kuang et al. (2024) achieved notable 

success in medical image segmentation, while our approach extends these principles to 

comprehensive dementia staging. The integration of ordinal classification principles with advanced 

pretraining strategies contributes to our superior performance. 

 

5.4.Limitations and Future Directions 

Despite strong performance, several limitations warrant consideration. The increased computa- 

tional requirements may limit deployment in resource-constrained settings, though the clinical 

accuracy benefits likely justify these costs in most medical applications. The reliance on T1- 

weighted MRI alone may miss metabolic or functional changes detectable through PET or fMRI, 

suggesting potential benefits from multimodal fusion approaches. 

Future work should investigate integration with genetic, biofluid, and cognitive assessment data 

to further enhance diagnostic accuracy and prognostic capability. Longitudinal progression modeling 

and time-to-conversion prediction for individual patients represent important research directions, 

building upon multi-task learning frameworks like HiMAL (Kumar et al., 2024). 

 

6.Conclusions 
This work presents NeuroFusion-AD, a novel hybrid deep learning framework that achieves state-

of-the-art performance for five-stage dementia classification from structural MRI. The multi-stream 

architecture effectively combines 3D CNN volumetric encoding, 2D CNN-BiLSTM slice-sequential 

modeling, and transformer-based multi-region fusion to capture comprehensive neuroanatomical 

patterns associated with AD progression. 

Key findings include: (1) Superior performance with 97.5% accuracy significantly ex- 

ceeding existing approaches; (2) Comprehensive five-stage classification with balanced per- 

formance across all stages; (3) Clinical interpretability through multi-modal attention visual- 

ization; (4) Robust generalization demonstrated through external validation; and (5) Technical 

innovation combining ordinal constraints, self-supervised pretraining, and multi-task learning. The 

framework addresses critical clinical needs for early dementia detection and staging, providing a 

powerful tool for treatment planning, clinical trial enrollment, and disease moni- toring. The 

comprehensive evaluation and interpretability features position NeuroFusion-AD 

for clinical translation and regulatory consideration. 

Future research directions include multimodal integration leveraging recent advances in 

contrastive learning (Zhang et al., 2022; Chaitanya et al., 2020), longitudinal progression mod- eling 

using hierarchical multi-task approaches (Kumar et al., 2024), and prospective clinical validation 
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studies. The reproducible methodology and strong performance foundation establish NeuroFusion-

AD as a significant advancement toward automated, accurate, and interpretable dementia 

classification. 
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