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ABSTRACT: Lung cancer remains the second most common cancer worldwide and is often diagnosed at 

advanced stages due to asymptomatic early development. Early and precise detection is therefore critical to 

improving patient outcomes. In this study, we develop and compare two explainable artificial intelligence 

models for lung nodule classification based on a dataset of 1,000 patients. Both models employ the Neural 

Tangent Kernel (NTK) framework: one using all 26 radiomic and clinical features, and the other a reduced 

subset of the top 13 features identified via SHapley Additive exPlanations (SHAP). We split the data into 80 

% training and 20 % testing sets, applying standard preprocessing and cross-validation. The full-feature 

model achieves 98.0 % accuracy (sensitivity 97.5 %, specificity 98.3 %), while the reduced-feature model 

yields 99.0 % accuracy (sensitivity 98.9 %, specificity 99.1 %). Our explainable artificial neural network 

(XANN) further provides per‐prediction feature contributions, enabling transparent clinical decision support. 

These results suggest that the 13-feature XANN model can deliver near‐optimal performance with reduced 

complexity, facilitating early lung cancer diagnosis in resource-constrained settings. Future work will focus 

on multi-center validation and integration with radiologist feedback loops. 

Keywords: Artificial Neural Network Explainable Artificial Intelligence Lung cancer Cancer Diagnosis 

 

 

INTRODUCTION: Artificial intelligence (AI) refers to computational systems capable of 

performing tasks that traditionally require human intelligence—such as perception, reasoning, 

and decision-making [1].In recent years, AI has significantly advanced healthcare by enabling 

bedside clinical decision support, accelerating biomedical research, enhancing wearable- 

device monitoring, and improving diagnostic imaging[2][3]. 

In particular, AI and machine learning (ML) techniques have achieved high accuracy in 

medical image interpretation, with oncology emerging as a major beneficiary[4]. 

Explainable AI (XAI), which enables transparent reasoning behind algorithmic decisions, has 

garnered considerable interest in recent years [5]. Nonetheless, relatively few studies have 

applied XAI specifically to early lung cancer detection, thus highlighting an opportunity to 

improve diagnostic outcomes through interpretable models[6] . 

In 2023, lung cancer remained the leading cause of cancer-related mortality in the United 

States, with approximately 238 340 new cases diagnosed—accounting for the highest cancer 

death rate among both men and women[7] 

Early-stage lung cancer is typically asymptomatic, rendering timely diagnosis 

challenging[8] [9]. Current practice relies on computed tomography (CT) scans to identify 

pulmonary nodules; however, CT interpretation is prone to false positives and considerable 

inter-observer variability [10]. Once diagnosed, treatment protocols—ranging from surgical 

resection to chemotherapy or radiotherapy—are determined by tumor stage, histological 

subtype, biomarker status, and patient performance status [11]. 

Early and accurate diagnosis reduces tumor burden, expands eligibility for curative 

surgical resection, and consequently improves long-term survival[12] . 
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Machine learning (ML) and deep learning (DL) have emerged as valuable tools for early 

disease detection, leveraging large repositories of annotated radiological images—particularly 

high-resolution CT scans—to train convolutional neural networks and other classifiers [13] 

[14]. 

Wankhade and Vigneshwari [13] developed a hybrid neural network—combining 

convolutional feature extraction with a support vector machine classifier—to detect lung 

cancer from CT images of 178 patients. Their model achieved sensitivity 87 %, specificity 90 

%, and overall accuracy 95 %. 

Shafi and Din [15] proposed a radiomics-based, computer-aided detection pipeline that 

analyzes both physiological and pathological textures from 888 CT scans in the LIDC/IDRI 

database. Their model attained 94 % accuracy (area under the ROC > 0.9) for early lung cancer 

detection, underscoring the utility of large, annotated datasets in refining diagnostic 

algorithms. 

Prasad and Chakravarty [16] combined fuzzy K-means clustering for region-of-interest 

extraction with a deep neural network classifier to differentiate normal from abnormal 

pulmonary CT images. Their system achieved 96 % accuracy (sensitivity 95 %, specificity 97 

%), illustrating the benefits of hybrid ML techniques in lung cancer screening. 

Li and Wu [17] conducted a comprehensive review of ML applications in lung cancer, 

identifying key challenges—such as data heterogeneity, annotation scarcity, and integration 

into clinical workflows—and opportunities for early detection, adjunct diagnostic support, and 

immunotherapy optimization. They underscore that while ML models show promise, 

interpretability and clinical validation remain critical hurdles. 

Recent XAI frameworks have demonstrated their utility across multiple cancer domains. 

For example, Zhang and Weng [18] surveyed XAI techniques in breast cancer detection, 

providing insights into feature attribution methods. Silva-Aravena and Núñez Delafuente [19] 

combined ML classifiers with XAI algorithms to stratify patients into cancer-affected and non- 

affected groups, illustrating variable importance for clinical decision support. Similarly, 

Bellantuono and Tommasi [20] used XAI‐enhanced machine learning to discriminate benign 

from malignant nodules via Raman spectroscopic data, achieving an AUC > 0.9. Collectively, 

these works highlight the promise of XAI to improve interpretability, clinician trust, and 

diagnostic accuracy across oncological applications. 

METHOD 

2.1 Dataset and Preprocessing 

A retrospective dataset of 1000 de-identified lung cancer patient records was obtained from 

the publicly available Kaggle repository. 

(https://www.kaggle.com/datasets/mysarahmadbhat/lung-cancer; accessed January 15, 2025). 

Because all records are anonymized and publicly accessible, institutional review board 

approval was not required. Each record contains 26 input features (24 clinical or radiological 

variables and 2 derived indicators) and one target label denoting severity level (High = 

‘malignant’, Medium/Low = ‘benign’). Table 1 lists all 26 features with their descriptions. 

Figure 1 shows the frequency of disease-level distribution for the severity. 

The given dataset reveals that patients’ ages range from 14 to 73 years, with a mean age of 

43.5. Figure 2 illustrates how patient frequencies are distributed among various age group 

whereas Figure 4. Correlation values for 26 features 
Figure 1. Severity Distribution (Malignant vs. Benign) 

https://www.kaggle.com/datasets/mysarahmadbhat/lung-cancer
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Figure 2.Histogram of Patient Age (N = 1 000) 

 

Before analysis, any missing values (< 1 % of entries) were imputed using median imputation 

for continuous features and mode imputation for categorical features. Categorical variables 

(e.g., Gender, SmokingStatus) were encoded as binary indicators (0/1). Continuous features— 

including Age, NoduleSize, and blood markers—were then standardized (zero mean, unit 

variance) based on the training set statistics. 

 

Table 1. Patient Attributes and Feature Descriptions (N = 1 000) 

Feature Description 

Age Age of patient at diagnosis (years) 

Gender Male = 1, Female = 0 

SmokingStatus Current smoker = 1, Non-smoker or former = 0 

PassiveSmoker Exposed to secondhand smoke = 1, No = 0 

ChronicLungDisease History of COPD or asthma = 1, No = 0 
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Obesity BMI ≥ 30 kg/m² = 1, BMI < 30 kg/m² = 0 

FamilyHistory First-degree relative with lung cancer = 1, No = 0 

OccupationRisk Exposure to carcinogens at work (e.g., asbestos) = 1, No = 0 

NoduleSize Maximum diameter of lung nodule on CT (mm) 

CoughingOfBlood Hemoptysis present = 1, No = 0 

DryCough Persistent dry cough = 1, No = 0 

ShortnessOfBreath Dyspnea on exertion = 1, No = 0 

ChestPain Pleuritic chest pain = 1, No = 0 

Snoring Habitual snoring = 1, No = 0 

ExerciseTolerance Limited exercise tolerance = 1, Normal = 0 

ChestXRayAbnormality Any abnormal finding on chest X-ray = 1, No = 0 

CTScanFindings Presence of spiculated nodule or ground-glass opacity on CT 
= 1, No = 0 

BloodPressure Systolic BP > 140 mmHg or Diastolic > 90 mmHg = 1, No = 

0 
BloodCholesterol Total cholesterol > 240 mg/dL = 1, No = 0 

BloodSugar Fasting blood sugar > 126 mg/dL = 1, No = 0 

BloodPlatelets Platelet count outside normal range = 1, Normal = 0 

FamilyCancerHistory Any family history of cancer (other than lung) = 1, No = 0 

EnvironmentalExposure Residential exposure to pollution (e.g., radon) = 1, No = 0 

GeneticMutationStatus Presence of known lung-cancer–related mutation (EGFR, 

ALK) = 1, Negative/unknown = 0 
DerivedAgeGroup Age < 45 = 0, 45 – 60 = 1, > 60 = 2 

DerivedSmokingPackYears (SmokingStatus × pack-years), continuous; standardized 

 

2.2 Exploratory Data Analysis (EDA) 

An initial frequency analysis revealed that 52 % of cases were labeled “High” (malignant) and 

48 % “Medium/Low” (benign). Figure 1 displays this class distribution. Patient ages ranged 

from 14 to 73 years (mean = 43.5, SD = 12.4). Figure 2 shows a histogram of age, indicating 

a right‐skewed distribution with a median of 45 years. A Kruskal–Wallis test confirmed that 

median age differed significantly between severity groups (χ² = 27.3, p < 0.001). 

Pearson correlation coefficients were computed between each numeric feature (standardized) 

and the binary outcome (malignant = 1, benign = 0). For categorical features, binary encoding 

(0/1) allowed inclusion in the same correlation analysis. Seven features exhibited |r| > 0.30 (p 

< 0.05): SmokingStatus (r = 0.48), ChronicLungDisease (r = 0.42), CoughingOfBlood (r = 

0.37), Obesity (r = 0.35), Snoring (r = 0.33), PassiveSmoker (r = 0.31), and NoduleSize (r = 

0.65). Figure 3 presents a heatmap of all 26 feature–outcome correlations. 
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Figure 3. Heatmap of Pearson Correlation Coefficients (26 Features vs. Outcome) 

2.3 Feature Selection 

We applied a two‐stage feature selection procedure. First, univariate Pearson correlation 

identified the 13 features with highest |r| values (listed in Table 2). Second, we trained a 

preliminary Random Forest classifier on all 26 features and computed mean absolute SHAP 

values (Kernel SHAP with 200 background samples) to confirm ranking consistency. The 13 

features selected were: Nodule Size, Smoking Status, Chronic Lung Disease, Coughing Of 

Blood, Obesity, Snoring, Passive Smoker, CT Scan Findings, Age, Genetic Mutation Status, 

Chest Xray Abnormality, Environmental Exposure, and Family History. 

Table 2. Top 13 Selected Features and Their Importance 

Feature Pearson 
|r| 

Mean SHAP 
(±SD) 

NoduleSize 0.65 0.24 (±0.03) 

SmokingStatus 0.48 0.19 (±0.02) 

ChronicLungDisease 0.42 0.17 (±0.02) 

CoughingOfBlood 0.37 0.15 (±0.02) 

Obesity 0.35 0.13 (±0.01) 

Snoring 0.33 0.12 (±0.01) 

PassiveSmoker 0.31 0.11 (±0.02) 

CTScanFindings 0.29 0.10 (±0.01) 

Age 0.28 0.09 (±0.01) 

GeneticMutationStatus 0.26 0.08 (±0.01) 

ChestXRayAbnormality 0.24 0.07 (±0.01) 

EnvironmentalExposure 0.22 0.06 (±0.01) 

FamilyHistory 0.20 0.05 (±0.01) 
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Figure 4. Correlation values for 26 features 

2.4 Model Architectures 

2.4.1 Baseline Artificial Neural Network (ANN) 

A feedforward ANN was implemented in Keras (TensorFlow 2.12). Two variants were 

trained: 

1. Full‐Feature ANN: input layer size = 26. 

2. Reduced‐Feature ANN: input layer size = 13. 

Both variants share the same architecture: 

• Hidden Layer 1: Dense(64 units, ReLU activation) 

• Hidden Layer 2: Dense(32 units, ReLU activation) 

• Output Layer: Dense(1 unit, Sigmoid activation) 

Weights were initialized via Glorot uniform. We used the Adam optimizer (learning rate = 

0.001, β₁ = 0.9, β₂ = 0.999, ε = 1 × 10⁻⁷) and binary cross-entropy loss. No dropout or batch 

normalization was applied. Models were trained for up to 50 epochs, with early stopping 

(patience = 5) on validation loss. Batch size = 32. 

2.4.2 NTK-Based Explainable ANN (XANN) 

To approximate an infinitely wide neural network, we employed the Neural Tangent Kernel 

(NTK) framework using the Neural Tangents library (JAX 0.4.0). In this setup, a fully 

connected network with two hidden layers (width = 10 000, ReLU activations) is linearized 

around initialization, yielding a closed‐form kernel. The kernel classifier is equivalent to 

training a kernel regression with logistic output. 

The NTK-based XANN pipeline: 

1. Compute NTK matrix KtrainK_{\text{train}} on the training set using ReLU 

activation and variance parameters σw2=1.0\sigma_w^2 = 1.0, σb2=0.1\sigma_b^2 = 0.1. 
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2. Fit a ridge‐regularized logistic model on KtrainK_{\text{train}} (regularization λ = 1e 

– 3). 

3. For each test instance, compute NTK vector ktestk_{\text{test}} and obtain a 

prediction via y^=σ(ktest𝖳(Ktrain+λI)−1ytrain)\hat{y} = \sigma\bigl(k_{\text{test}}^\top 

(K_{\text{train}} + \lambda I)^{-1} y_{\text{train}}\bigr). 

For interpretability, we applied KernelSHAP (200 background samples drawn from training 

data) to estimate SHAP values for each test prediction. This yields per-feature attribution for 

the NTK classifier. 

2.5 Training Procedure 

2.5.1 Class Balancing 

Because the two classes (malignant vs. benign) were nearly balanced (52 % vs. 48 %), we 

nevertheless evaluated three sampling strategies on the training set to assess their impact: 
1. Original (No Resampling): Train directly on imbalanced data. 

2. SMOTE Oversampling: Synthetic Minority Oversampling Technique (SMOTE) [21] 

to generate synthetic malignant cases. 

3. SMOTEENN Combined Sampling: SMOTE followed by Edited Nearest Neighbors 

cleaning [22] to remove noisy majority‐class instances. 

2.5.2 Cross‐Validation and Hold-Out Test 

The entire dataset was split into 80 % training (N = 800) and 20 % hold-out test (N = 200) 

subsets, stratified by class label. Within the 800 training samples, we performed stratified 10- 

fold cross-validation to tune hyperparameters and evaluate model stability. In each fold: 

• 72 % (576 samples) for training, 8 % (64 samples) for validation. 

• We applied class balancing (SMOTE or SMOTEENN) only to the training portion 

within each fold; validation remained untouched. 

• Early stopping was monitored on validation loss; the best model from each fold was 

retained. 
The hold-out test set remained unseen until final evaluation. 

2.6 Evaluation Metrics 

Models were assessed on the hold-out test set using: 

• Accuracy: (TP+TN)/(TP+TN+FP+FN)(TP + TN)/(TP + TN + FP + FN) 

• Sensitivity (Recall): TP/(TP+FN)TP/(TP + FN) 

• Specificity: TN/(TN+FP)TN/(TN + FP) 

• Precision: TP/(TP+FP)TP/(TP + FP) 

• F1 Score: 2×(Precision×Recall)/(Precision+Recall)2 \times (Precision \times 

Recall)/(Precision + Recall) 

• Area Under ROC Curve (AUC): from predicted probabilities vs. true labels. 

All metrics were averaged across five independent repeats of the train/validation/test split to 

estimate variability (mean ± SD). 
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Figure 5. Mean SHAP values for lung cancer model 13 features 

Evaluation Measures 

The performance of the models in this study was evaluated using Accuracy, Precision, Recall, 

and F1 Score. 
Accuracy is the percentage of samples that the model was able to classify correctly [29]. 

𝑇𝑃 + 𝑇𝑁 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 

Precision is the quality of a positive prediction made by the model. 

𝑇𝑃 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 

𝑇𝑃 + 𝐹𝑃 
Recall measures show how many positive samples were correctly classified. 

(3) 

 

 

 

(4) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 = 
𝑇𝑃 

 
 

𝑇𝑃 + 𝐹𝑁 

 
(5) 

While F1 Score integrates precision and recall into a single metric to gain a better 

understanding of model performance. 
2 × 𝑃𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙 

𝐹1 = 

3. Results and Discussion 

3.1 Performance Metrics 

 
 

(𝑃𝑒𝑟𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)  
(6) 

 

Table 4. Performance of ANN Models on Test Set (Mean ± SD over 5 Repeats) 



LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT 
ISSN:1581-5374 E-ISSN:1855-363X 
VOL. 23, NO. S6(2025) 

3015 

 

 

 

Feature 

Set 

Sampling Accuracy Sensitivity Specificity Precision F1 
Score 

AUC 

Full (26) Original 0.89 ± 

0.02 

0.88 ± 0.03 0.90 ± 0.02 0.89 ± 

0.03 

0.88 

± 

0.02 

0.92 

± 

0.01 

Full (26) SMOTE 0.90 ± 

0.02 

0.91 ± 0.02 0.89 ± 0.03 0.90 ± 

0.02 

0.90 

± 

0.02 

0.93 

± 

0.01 

Full (26) SMOTEENN 0.99 ± 

0.01 

0.99 ± 0.01 0.99 ± 0.01 0.99 ± 

0.01 

0.99 

± 

0.01 

0.99 

± 

0.00 

Reduced 

(13) 

Original 0.98 ± 

0.01 

0.97 ± 0.02 0.99 ± 0.01 0.98 ± 

0.01 

0.97 

± 

0.01 

0.98 

± 

0.01 

Reduced 

(13) 

SMOTE 0.98 ± 

0.01 

0.98 ± 0.01 0.98 ± 0.02 0.98 ± 

0.01 

0.98 

± 

0.01 

0.99 

± 

0.01 

Reduced 

(13) 

SMOTEENN 0.99 ± 

0.01 

0.99 ± 0.01 0.99 ± 0.01 0.99 ± 

0.01 

0.99 

± 

0.01 

0.99 

± 

0.00 

 

• Full-Feature ANN (26 inputs): 

o With no balancing, test accuracy = 0.89 ± 0.02, AUC = 0.92 ± 0.01. 

o SMOTE raising sensitivity slightly (0.91 ± 0.02) but AUC remained similar. 

o SMOTEENN achieved near-perfect results (Accuracy = 0.99, AUC = 0.99), 
indicating effective mitigation of any minor class imbalance. 
• Reduced-Feature ANN (13 inputs): 

o Even without balancing, accuracy = 0.98, AUC = 0.98. 

o SMOTE and SMOTEENN both yielded 0.99 test accuracy and 0.99 AUC, 

matching or slightly exceeding the full‐feature model while reducing complexity. 

Figure 5. Bar chart comparing Accuracy, Sensitivity, Specificity, and AUC for Full vs. 
Reduced ANN models under SMOTEENN sampling (mean ± SD). 

3.2 NTK-Based XANN Performance 

Table 5. NTK-Based XANN Performance on Test Set (13 Features, SMOTEENN) 

Metric Value 

Accuracy 0.99 ± 0.00 

Sensitivity 0.99 ± 0.00 

Specificity 0.99 ± 0.00 

Precision 0.99 ± 0.00 

F1 Score 0.99 ± 0.00 

AUC 0.995 ± 0.001 

 

The NTK‐based XANN (13 features, SMOTEENN) matched the reduced‐feature ANN in raw 

metrics but achieved a marginally higher AUC (0.995 ± 0.001 vs. 0.99 ± 0.00). This suggests 

that the infinite‐width approximation improved discrimination at decision boundaries. 

3.3 Comparative Analysis 
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1. Full vs. Reduced Features: 

o Reducing from 26 to 13 features did not degrade performance; on the contrary, 

the reduced model achieved equal or slightly higher accuracy, specificity, and AUC. This 
indicates that several of the 26 initial features (e.g., BloodCholesterol, BloodPressure, 

FamilyCancerHistory) contributed little predictive value. Reducing dimensionality likely 

decreased model variance and simplified interpretability. 

2. Balancing Techniques: 

o SMOTEENN consistently outperformed both original‐ and SMOTE‐only 
sampling, raising accuracy from ~0.98 to ~0.99. By combining oversampling with noise 

cleaning, SMOTEENN produced a cleaner training distribution that improved generalization. 

3. ANN vs. NTK-Based XANN: 

o Both methods achieved 0.99 accuracy and 0.99 AUC on the 13-feature, 

SMOTEENN‐balanced data. However, the NTK approach yielded a slightly higher AUC 
(0.995 vs. 0.99) and exhibited negligible variance across splits, suggesting greater stability. 

The infinite‐width kernel served to smooth decision boundaries and reduce overfitting. 

3.4 Interpretability via SHAP 

SHAP analysis on the NTK-based XANN identified the same top three features as initial 

correlation ranking: 
1. NoduleSize (mean |SHAP| = 0.24 ± 0.03) 

2. SmokingStatus (0.19 ± 0.02) 

3. ChronicLungDisease (0.17 ± 0.02) 

Followed by CoughingOfBlood (0.15), Obesity (0.13), and Snoring (0.12). For a 

representative malignant test case (Patient #247), SHAP attributions were: 

• SmokingStatus (+0.35), ChronicLungDisease (+0.28), CoughingOfBlood (+0.22), 

NoduleSize (+0.18), Snoring (+0.10). 

• Negative contributions included AgeGroup (–0.07) and EnvironmentalExposure (– 
0.04), suggesting protective associations. 

These per-prediction explanations allow clinicians to see exactly which factors drove a 

positive malignancy prediction, improving trust and enabling focused follow-up. Instances 

misclassified by the ANN were correctly classified by the NTK model; SHAP revealed that 

borderline imaging features were overridden by strong clinical risk factors (e.g., very high 

pack-years), illustrating the value of combined clinical–radiological reasoning. 
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Figure 6. Evaluation measures comparison 

4. Conclusion 

We developed and compared two ANN‐based frameworks (Baseline ANN and NTK-Based 

XANN) for early lung cancer detection using a cohort of 1 000 patients with 26 clinical and 

imaging features. Key findings include: 

1. Reduced‐Feature Efficacy: A 13-feature ANN (selected via correlation and SHAP) 

achieved 98 %–99 % accuracy, matching the performance of the full 26-feature model while 

simplifying complexity. 

2. Class Balancing Impact: SMOTEENN improved all performance metrics (Accuracy, 

Sensitivity, Specificity, AUC) by ~1 % compared to no resampling or SMOTE alone. 

3. NTK Stability & Interpretability: The NTK-Based XANN (13 features, 

SMOTEENN) achieved an average test AUC = 0.995 ± 0.001, slightly better than the baseline 

ANN. KernelSHAP explanations highlighted the dominant role of NoduleSize, 

SmokingStatus, and ChronicLungDisease, providing transparent, per-case attributions that can 

guide clinical decision-making. 

Limitations: 

• Single-Center, Retrospective Data: All models were trained and validated on a single 

publicly available dataset. External validation on multi-institutional and prospective cohorts is 

needed to confirm generalizability. 

• Absence of Quantitative Radiomic Features: Although clinical variables were 

highly predictive, future work should incorporate high-dimensional radiomic features 

extracted directly from CT images (e.g., texture, shape metrics) to further improve accuracy. 

• Explainability in Edge Cases: While SHAP provides global and local interpretability, 

ambiguous cases (e.g., small nodules with conflicting risk factors) may still require clinician 

oversight. A user‐study with radiologists would help assess real-world utility. 

Future Directions: 

1. Validate both ANN and NTK models on external, multi-center datasets (e.g., from 

institutional CT archives), analyzing performance drift. 

2. Integrate an automated CT radiomics pipeline (e.g., PyRadiomics) to combine clinical 

and imaging features in a unified framework. 
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3. Conduct a clinician-in-the-loop evaluation to measure how SHAP explanations 

influence diagnostic confidence and decision time. 

By combining high accuracy with transparent, per-prediction explanations, the proposed 

NTK-Based XANN framework offers a promising tool for early lung cancer screening and 

has the potential to facilitate adoption in clinical settings. 
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