
LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374E-ISSN:1855-363X
VOL.23,NO.S5(2025)

2131

REAL-TIME TRAFFIC ACQUISITION AND FLOW-LEVEL FEATURE

EXTRACTION USING A REALTIME-NET FLOW EXTRACTOR (RTNFE)

Dr.K.K.Savitha1, T.Raja2, H.Fathima3

1Assistant Professor, Department of Computer Applications,

Bharathiar University PG Extension and Research Centre, Erode.
2Research Scholar, Department of Computer Applications,

Bharathiar University PG Extension and Research Centre, Erode.

Research Scholar, Department of Computer Applications,

Bharathiar University PG Extension and Research Centre, Erode.

 savitha.pge@buc.edu.in1,

 savitha.gopinath@gmail.com1

vtrajan3@gmail.com2

fathi.fathimahussain@gmail.com3

*Corresponding Author mail id: vtrajan3@gmail.com

Abstract: As cyber threats become more advanced, constantly monitoring network traffic is important for

detecting intrusions and stopping them. A new RealTime-NetFlowExtractor (RTNFE) framework was created

using Python and combines Scapy, Kafka, and Wireshark through PyShark to read packets in real-time and

organize them by flow levels. Because RTNFE has a live-streaming feature and instant buffering, it offers real-

time analytics of packets. The features like timestamp, IP addresses of each end, ports, protocol, and counts of
bytes and packets, along with flow duration, are all extracted using a parallel, sized sliding window. To simulate

real attacks, CICIDS 2018 packets are played back using tcpreplay, which contains both normal and malicious

retrieved traffic that is further classified using mathematically modified deep learning technique. Throughput

measures the number of packets per second, time to analyze each feature indicates latency, and data concerning

packet-to-flow completeness is used for evaluation. According to the outcome, such a system is a good way to

perform real-time analytics and can be used in downstream functions such as finding unusual patterns in

networks or stopping new attacks.

Keywords: Packet capture, flow extraction, sliding window, kafka streaming, replay evaluation, feature

normalization, attention mechanism, deep learning classification, and adam optimization.

Introduction

Real-time traffic acquisition captures and processes live network data to extract flow-level

features, enabling immediate detection of anomalies and cyber threats. This continuous

monitoring strengthens network security by providing timely insights, facilitating proactive

intrusion detection, and ensuring resilient defense against evolving attacks in dynamic

network environments. As more services go digital and many devices are connected, the vast

growth of internet traffic is making serious pressure on today’s communication networks to

work well and be secure. The threats have developed very quicklyacross the connected

network [1]. Cybercriminals now use Advanced Persistent Threats (APTs), ever-changing

malware, and recently discovered security weaknesses to break into networks and steal

important data [2]. The improved techniques of attackers have made it harder for the

traditional intrusion detection approach to be successful. Because of this challenge, those

managing networks and analysing cybersecurity are resorting to continuous examination of

network activity and in-depth data analysis, which supports faster action [3, 4].

Flow analysis studies statistics and time periods in communication among different network

devices, so it is more precise than analysing packets at the lowest level [5]. This part of the

flow includes details such as IP addresses, ports, protocols, timestamps, the number of bytes

exchanged, the number of packets transferred, and the session’s duration. Those like Cisco’s

NetFlow and the IETF’s IPFIX are some of the recognized structures used to display this

data. But these applications usually include special software that cannot be easily customized

mailto:savitha.pge@buc.edu.in1
mailto:fathi.fathimahussain@gmail.com

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374E-ISSN:1855-363X
VOL.23,NO.S5(2025)

2132

or changed. Besides, common systems usually run offline, process multiprocessor analyses

from stored records, and analyze them in batches, which makes them unfit for reacting to

modern emerging threats [6].

The security community is using open-source tools such as Scapy, Wireshark and its Python

version (PyShark), and Apache Kafka. With Scapy, it is possible to change packet contents

flexibly and use many protocols, and PyShark offers Wireshark’s powerful features for

detailed viewing. The queue that Kafka offers can handle data packets without involving the

processing step immediately. Even though these tools are strong individually, it is still tough

to assemble them into one real-time pipeline. Problems such as dropped packets, off-sync

threads, and the great amount of time taken for deep parsing may decrease both the system’s

efficiency and scalability [7, 8].

This research intends to form a single, low-latency, and modular framework in Python to

address the issues mentioned and make real-time feature extraction for machine learning-

based intrusion detection. At present, leading researchers use CICIDS 2017, NSL-KDD, and

UNSW-NB15 among other static datasets that are dated and not diverse enough for effective

model training in real-life settings. Then again, using a real-time system means you can

capture or replay traffic in real time to label it while Ethernet is still up and running. Besides,

real-time analysis means that protection measures can be put in place sooner after detection.

The intended result is RTNFE, a Python module that gathers traffic in real time or through a

replay, analyzes the packets, and turns them into data at the flow level. Scapy is used for

packet sniffing, PyShark helps to parse packets in detail, and Kafka is the solution for

efficient queuing of data. The engine uses both asyncio and Python threads to do all the

capture, buffering, and flow aggregation tasks. Building accurate flow records is made

possible by the main part of the flow engine, a sliding time-window model. The features

included in this process are duration of flow, number of packets or bytes per flow, the time

between consecutive packets, and the direction of each flow’s packets [9].

To make our behavior similar to real-life, we rely on the CICIDS 2018 dataset that provides

numerous labeled PCAPs with attacks like DoS, DDoS, Botnet, Brute-force, and Web

attacks. With tcpreplay, the process of replaying them is speed-limited, so the system acts as

if it is processing them from a live connection. There is a topic between the capture and

analysis modules in Kafka that makes the process more independent and tolerant to failures.

The purpose of this research is to deal with an important issue in the current cybersecurity

monitoring system. With its open-source tools, high speed, use of multiple threads, and

ability to capture, analyze, and feature real-time data, RTNFE makes a notable improvement

to adaptable network defense systems. Adopting this method makes it possible to do more

advanced studies on real-time problem detection, forecasting, and automatic responses to

problems based on using data efficiently.

Literature Review

The table 1 shows what recent studies (2024–2025) have researched about IDS that rely on

advanced machine learning techniques and optimization on CICIDS benchmark datasets.

Such works concentrate on better detection accuracy, choosing the right features, and helping

analyze packets almost instantly. Most research studies use AI methods like bio-inspired and

deep learning, yet they often handle the data outside of real-life conditions. The summary

provided in the table allows for spotting similarities in methodology, slow areas, and

problems universities have, this foundation was key in building RTNFE.

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374E-ISSN:1855-363X
VOL.23,NO.S5(2025)

2133

Table 1. Comprehensive Analysis of Literature Review

Author(s) & Year

Algorithm /

Technique

Used

Performance

Metrics

Core

Contribution /

Findings

Najafi Mohsenabad &

Tut (2024) [10]

Bio-Inspired

Feature

Selection: ACO,

ABC, FPA +

ML Classifiers

ACO: 99.0%

Accuracy

Proposed

optimized IDS

with minimum

features; ACO

proved most

effective; reduced

model building

time with FPA.

FPA: 98.7%

Accuracy, 1s build

time

ABC: 98.6%

Accuracy

Selvam&Velliangiri

(2024) [11]

CNN + Deep

Autoencoder

(AE) + RF

Precision: 99.5% Demonstrated

superior deep

learning-based

intrusion detection

on

CICIDS2017/2018;

efficient

timestamp-based

filtering.

Recall: 99.5%

F1-score: 99.5%

Gopalsamy (2024)

[12]

MLP-

Backpropagation

(MLP-BP)

Accuracy: 98.97% Evaluated MLP-

BP on normalized

and cleaned

CICIDS2018;

showed balance in

detection metrics.

Precision: 99%

Recall: 98%

F1-score: 99.38%

Ibrahimi et al. (2024)

[13]

Decision Tree,

Random Forest,

Naïve Bayes,

Gradient Boost

Accuracy (varied

by model): 96%–

99%

Compared

supervised ML

classifiers for both

binary and

multiclass IDS

tasks; suitable for

IoT threat

adaptation.

Chimphlee&Chimphlee

(2024) [14]

Hyperparameter-

Optimized

XGBoost (HO-

XGB)

Accuracy: >99%

(with tuned

params)

Demonstrated that

HO-XGB

outperforms

conventional

methods by fine-

tuning 10+

hyperparameters.

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374E-ISSN:1855-363X
VOL.23,NO.S5(2025)

2134

Onishchenko et al.

(2024) [15]

Associative Rule

Mining +

Intelligent Data

Analysis (IDA)

Qualitative

Evaluation; no

exact metric

Proposed

automated rule

generation for

cyber incident

detection in SIEM

using

CICIDS2018;

tackled

dimensionality and

rule sequencing.

Kumar & Pandey

(2024) [16]

Comparative

Survey: ANN,

RF, CNN,

Apache Spark

RF: 99.98%

Accuracy

Provided empirical

performance

comparison

showing

CICIDS2018

superiority over

CICIDS2017 in

IDS development.

ANN: 99.97%

Accuracy

Khan et al. (2024) [17]

Literature Study

on Anomaly

Detection Using

ML

Not applicable

Highlighted the

insufficiency of

CICIDS2017 and

recommended

dynamic datasets

like CICIDS2018

for ML

generalization.

Dube (2024) [18]
Dataset Integrity

Evaluation
Not applicable

Criticized use of

summarized

CICIDS2017 data;

advocated for

using raw

CICIDS2018 to

avoid model

overfitting.

The main focus of most current intrusion detection frameworks is to reach a high rate of

accuracy by working with static data and doing batch processing. Although Artificial Bee

Colony (ABC) [19], Ant Colony Optimization (ACO), Deep Autoencoders (AE), CNNs, and

XGBoost have given promising outcomes, they are mostly judged with offline methods. The

result is that they cannot be applied effectively in fast and urgent networks. Besides, most of

the time, these approaches use features extracted in advance, so they cannot handle threats

that change swiftly.

High efficiency is lacking when it comes to real-time packet analysis, dynamic collection of

data flows, and fast processing of feature data at the same time. There is not much attention

paid to making architectures that can be easily used with streaming technologies such as

Kafka. A lot of designs ignore factors such as latency and throughput, choosing to measure

security solutions only by their accuracy—but accuracy is not important in actual SOC

operations or IoT-based infrastructure.

RTNFE fixes these limitations with the combination of Scapy for capture, PyShark for

parsing, and Kafka for handling asynchronous data streams. With parallel sliding-windows,

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374E-ISSN:1855-363X
VOL.23,NO.S5(2025)

2135

data is both grouped and extraction occurs in real time, changing the raw traffic into

organized formats similar to NetFlow. PCAP replay on RTNFE works with CICIDS 2018

data, which allows investigators to move between controlled testing and using the system in

real life. As a result, IDS research changes from looking at events that have already occurred

to spotting them as they happen.

Proposed Methodology

To use the proposed RTNFE, line capture of packets, their processing, and detection of

intrusions is being done by using deep learning. Via PyShark, all the packets are stored and

the Scapy, then investigates them to identify details including timestamp, IPs, ports, protocol,

number of packets or bytes, and the time taken during the flow. A rolling window of data is

used so that these features can be calculated in real time with no errors. At the second stage,

data is sent over Kafka from the first stage so that the second-stage system can take it in for

analysis as required. At this point, tcpreplay is used to run the CICIDS 2018 traffic and assess

the framework’s behavior with both normal and malignant traffic, the latency it incurs,

supported data rate, and packet delivery effectiveness. The next stage of the process includes

a CNN with BiLSTM layer and normalizes the flow vectors using a better mathematical

approach. CNN deals with immediate surrounding places, while BiLSTM processes

relationships that exist over longer time periods. At last, a Softmax classifier helps determine

if a flow is dangerous or not. Balance weighting for each class is applied to the loss function

to tackle problems of class imbalance. With this setup, discovering cyber-attacks happens

promptly, effectively, and it is flexible to use in security systems nowadays.

Packet Capture & Flow-Level Feature Extraction

Packet Capture & Flow-Level Feature Extraction is the main step in the RTNFE framework

that gathers raw network packets and changes them into flow-level data in real time. First,

PyShark is used to access TShark, so one does not have to parse captures manually when

doing packet analysis with Python. At the same time, Scapy is utilized to parse every packet,

acquiring useful information from its Ethernet, IP, TCP/UDP, and application header fields.

All these packets have the timestamp, the IP addresses, the port numbers, the protocol, the

size, and direction of the packet extracted during the parsing.

Packets are grouped in a set interval by a sliding window technique, and the grouping is

based on the combination of their 5-tuple (source and destination IP addresses, source and

destination ports, and protocol) and how far apart they are in the packet sequence.

Flow_Duration, Total_Bytes, Packet_Count, Avg_Packet_Size, and

Inter_Packet_Arrival_Time are the metrics that describe every flow. These flow records are

saved in buffers and they are timed out so that buffer overflow does not occur.

Also, the logic for extracting information is designed so that packets from each interface may

be caught by separate threads, which maximizes throughput and makes sure only a small

number of packets are lost at high speeds. It is necessary to perform packet-to-flow

conversion to provide high-speed analytics and make sure that fast detection works in

environments with high packet volumes. These feature vectors are used to show the results

live and classify intrusions with a deep learning analysis after extraction.

Kafka-Based Streaming & Buffering

Kafka-Based Streaming & Buffering in the RealTime-NetFlowExtractor (RTNFE) framework

enables low-latency, fault-tolerant transmission of flow-level features from the capture

module to downstream components such as classification and storage. Apache Kafka is used

as a distributed publish-subscribe messaging system, facilitating scalable data streaming in

real time. Each processed flow Fi is structured as a JSON object containing:

Fi

={src_ip,dst_ip,src_port,dst_port,protocol,flow_duration,pkt_count,byte_count,avg_pkt_size,

iat_mean}

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374E-ISSN:1855-363X
VOL.23,NO.S5(2025)

2136

This tuple is serialized and sent by a Kafka producer to a designated topic Tc, representing

class c∈{benign,malicious}.

Let the message production rate is given in Equation 1.

λp =
𝑁𝑓
∆𝑡

where Nf is the number of flows generated in time window Δt. This must satisfy the Kafka

broker throughput capacity λb to avoid queuing delay is given in Equation 2.

λp ≤ λb

Kafka brokers maintain an in-memory buffer and persist messages with replication factor R,

ensuring fault tolerance. Let the partition buffer size be B bytes. Given average message size

m, the buffering capacity in number of messages is given in Equation 3.

𝑀𝑏𝑢𝑓 = ⌊
𝐵

𝑚
⌋

To avoid buffer overflow, the producer sends rate λp and consumer poll rate λc must satisfy

the condition in Equation 4.

λc ≥ λp

Kafka’s internal queueing follows log-structured storage, with message offset oi tracked per

partition Pk such that in Equation 5.

𝑜𝑖 = 𝑜0 + 𝑖for each message i in partition Pk

A Kafka consumer polls each partition to collect a batch of b messages at interval τ, forming

a batch buffer B={F1,F2,...,Fb}. This buffer is passed to the deep learning classifier. The

buffering delay δb is given in Equation 6.

δb = τ + ϵ
where ϵ is the decoding and parsing time.

Kafka ensures at-least-once delivery by tracking committed offsets. The end-to-end latency

Le2e is given in Equation 7.

𝐿𝑒2𝑒 = δcapture + δproduce + δbroker + δconsume

Where each term denotes delay due to packet capture, message serialization, broker queuing,

and consumer polling, respectively. This streaming and buffering design allows RTNFE to

achieve near-real-time delivery of flow vectors from raw packet capture to analysis,

decoupling data ingestion from classification, and ensuring resilience in high-throughput

environments.

Replay-Driven Evaluation with CICIDS2018

The CICIDS2018 dataset comprises real-world traffic traces labeled across various categories

(e.g., DDoS, brute force, port scan, botnet), and includes both benign and malicious packets.

To simulate a live network environment, packet replay is performed using the tcpreplay

utility is given in Equation 8.

tcpreplay → Packet Stream P = {p1, p2, . . . , pn}
Each packet pi is replayed at its original timestamp interval or user-defined speed, preserving

temporal characteristics.

As packets are replayed, the RTNFE framework captures them via Scapy or PyShark,

performs real-time parsing, and aggregates them into flows using a parallel-sized sliding

window mechanism. For a given window size ω, the flowFt at time t is defined in Equation 9.

𝐹𝑡 = ⋃ 𝑝𝑖

𝑛

𝑖=1
𝑇(𝑝𝑖)𝜖[𝑡,𝑡+𝑤]

Here, T(pi) is the timestamp of packet pi. This captures flow-level statistics (e.g., packet

count, byte count, inter-arrival time) within the active window.

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374E-ISSN:1855-363X
VOL.23,NO.S5(2025)

2137

This replay-driven setup closely mirrors production environments by simulating packet

streams under realistic network conditions. It allows precise calibration of sliding windows,

Kafka buffering rates, and classification latency. It also supports comparative evaluation of

different flow classifiers under a controlled yet dynamic traffic environment.

The replay-driven evaluation ensures RTNFE’s robustness and adaptability to live cyber

threats, validating the framework’s capability to extract actionable flow features and support

downstream real-time intrusion detection.

Mathematically modified Deep Learning-Based Flow Classification

The deep learning-based flow classification model operates on the flow-level feature vector

extracted from the RealTime-NetFlowExtractor (RTNFE) pipeline. Let the feature vector for

a given flow Fi is given in Equation 10.

𝑥𝑖 = [𝐹𝑙𝑜𝑤_𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑖, 𝑇𝑜𝑡𝑎𝑙_𝐵𝑦𝑡𝑒𝑠𝑖, 𝑃𝑎𝑐𝑘𝑒𝑡_𝐶𝑜𝑢𝑛𝑡𝑖, 𝐴𝑣𝑔_𝑃𝑘𝑡_𝑆𝑖𝑧𝑒𝑖, 𝐼𝐴𝑇_𝑀𝑒𝑎𝑛𝑖, …]
∈ 𝑅𝑑

where d is the feature dimension. To improve model convergence and stability, each feature

is normalized by subtracting its mean μj and dividing by its standard deviation σj calculated

over the training set, yielding normalized input is given in Equation 11.

𝑥𝑖𝑗̃ =
𝑥𝑖,𝑗 − μ

j

𝜎𝑗

The normalized vector 𝑥𝑖̃is fed into the first layer of the neural network. Each feedforward

layer computes an output vector by applying a linear transformation followed by a nonlinear

activation function f(⋅), typically ReLU is given in Equation 11.

ℎ
(𝑙) = 𝑓(𝑊(𝑙)ℎ

(𝑙−1) + 𝑏(𝑙))

where 𝑊(𝑙) and 𝑏(𝑙) are the learnable weights and biases of layer l, andℎ
(0)

=𝑥𝑖̃.
To enhance the model’s focus on discriminative flow features, an attention mechanism

modulates the activation of each neuron. This modulation is formulated as element-wise

multiplication of the layer output with a learned attention vector 𝑎(𝑙) is given in Equation 12.

ℎ
(𝑙) = 𝑓(𝑊(𝑙)ℎ

(𝑙−1) + 𝑏(𝑙)) ⊙ 𝑎(𝑙)

where𝑎(𝑙) is computed by applying a sigmoid activation σ(⋅)to a linear transformation of the

previous layer’s output is given in Equation 13.

𝑎(𝑙) = 𝜎(𝑊𝑎
(𝑙)
ℎ
(𝑙−1) + 𝑏𝑎

(𝑙)
)

This mechanism allows the network to dynamically weight each neuron’s contribution based

on learned importance.

At the output layer, the network produces logits z for each class via Equation 14.

𝑧 = 𝑊(𝐿)ℎ
(𝐿−1) + 𝑏(𝐿)

which are then converted to class probabilities through the softmax function is given in

Equation 15.

𝑦̂𝑐 =
exp⁡(𝑧𝑐)

∑ exp⁡(𝑧𝑘)
𝐶
𝑘=1

where C is the number of classes.

The model training objective is to minimize the cross-entropy loss over all N training flows

are given Equation 16.

L = −
1

𝑁
∑∑𝑦𝑖,𝑐

𝐶

𝑐=1

𝑙𝑜𝑔

𝑁

𝑖=1

𝑦̂𝑖,𝑐

whereyi,c is the one-hot encoded ground truth for flow i.

To mitigate overfitting, an L2 regularization term is added on the network weights are given

Equation 18.

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374E-ISSN:1855-363X
VOL.23,NO.S5(2025)

2138

Lreg = λ∑||𝑊(𝑙)||𝐹
2

𝐿

𝑙=1

and the total loss becomes (estimated by Equation 19)

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿 + 𝐿𝑟𝑒𝑔

where λ controls the regularization strength.

Parameter optimization is performed via the Adam algorithm, which updates each parameter

θ at iteration t using bias-corrected first and second moment estimates of gradients as in

Equation 20.

θt = θt−1 − η
𝑚𝑡̂

√𝑣𝑡 + 𝜖

with learning rate η and a small constant ϵ for numerical stability.

During inference, the predicted class label ci for flow Fi is obtained by Equation 21.

𝑐𝑖̂ = argmax
𝑐

𝑦𝑖̂ , 𝑐

This mathematically modified deep learning approach, incorporating attention mechanisms

and rigorous normalization, enhances classification accuracy by emphasizing critical flow

attributes and improving gradient flow during training, making it suitable for real-time

network intrusion detection applications. The procedure is given in Algorithm 1.

Algorithm 1. Proposed RealTime-NetFlowExtractor (RTNFE)

Input:

 Live Network Interface I

 Pre-recorded Traffic Trace T (from CICIDS2018)

 Kafka Topic Tc

 Deep Learning Classifier DLModel

Output:

 Predicted Labels for Each Flow {benign, malicious}

Stage 1: Packet Capture & Flow-Level Feature Extraction

1: Initialize PyShark and Scapy on Interface I

2: while True do

3: pkt ← capture_packet(I)

4: Extract header fields: timestamp, src_ip, dst_ip, src_port, dst_port, protocol, length

5: Group packets into flows based on 5-tuple and sliding window

6: For each flow Fi, compute features:

 {Flow_Duration, Total_Bytes, Packet_Count, Avg_Pkt_Size, IAT_Mean}

7: Store Fi as JSON tuple

Stage 2: Kafka-Based Streaming & Buffering

8: Monitor the number of flows generated over a time window

9: Ensure message production rate is within Kafka broker capacity

10: Calculate buffer size and ensure no overflow

11: Ensure consumer poll rate matches or exceeds production rate

12: for each Fi do

13: Produce Fi to Kafka Topic Tc

14: Track message offset

15: Batch messages periodically into buffer

16: Compute buffering delay

17: Measure end-to-end latency for flow delivery

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374E-ISSN:1855-363X
VOL.23,NO.S5(2025)

2139

Stage 3: Replay-Driven Evaluation

18: Replay traffic trace T using tcpreplay

19: for each pi in replayed trace do

20: Wait for original timestamp interval

21: Process packets using Stages 1 and 2 to form flows

Stage 4: Deep Learning-Based Flow Classification

22: for each flow Fi in buffer do

23: Construct feature vector x_i from flow attributes

24: Normalize feature vector

25: Pass x_i to the first neural network layer

26: for each hidden layer l do

27: Compute linear transformation and apply ReLU activation

28: Compute attention vector

29: Apply attention modulation to activations

30: end for

31: Compute output logits

32: Apply softmax to obtain class probabilities

33: Assign class label with highest probability

Training Phase:

34: Compute cross-entropy loss over training set

35: Add L2 regularization to loss

36: Combine losses to obtain total loss

37: Optimize model parameters using Adam optimizer

Return: Final predicted class label for each flow

Experimental Analysis

The simulation includes using tcpreplay to replay the CICIDS 2018 PCAP files on high-

speed network interfaces so they appear in real time. On a multi-core system running Ubuntu

22.04 and with 10 Gbps NIC and 64 GB RAM, RTNFE uses Scapy to get live packets and

PyShark for parsing before streaming them through the Kafka platform. As a result, I can

accurately measure live traffic capture, flow creation, and features that are relevant to my

work. CICIDS 2018 makes it possible to gauge the performance of models for detecting

intrusions and examining network traffic. There are labeled flows included from actual

attacks and benign situations. This collection of data helps with real-time network analytics

by giving high-quality PCAPs and flow-level features. This is explained in Table 2.

Table 2. Dataset Description

Attribute Details

Name CICIDS 2018 (Canadian Institute for Cybersecurity IDS 2018)

Collected By
Canadian Institute for Cybersecurity (CIC), University of New

Brunswick

Collection Duration 10 Days (Monday to Friday sessions)

Traffic Type Benign + Multiple Attack Scenarios

Protocols Covered TCP, UDP, ICMP, HTTP, HTTPS, FTP, SSH

Data Format PCAP (raw), CSV (flow features)

File Size ~80 GB of PCAP files

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374E-ISSN:1855-363X
VOL.23,NO.S5(2025)

2140

Number of Features 80 flow-level features

Tools Used for Generation LOIC, Hping3, Metasploit, Selenium, tcpreplay

Benign Activities Web browsing, Email, Streaming, VoIP, File Transfer

Attack Categories
DoS, DDoS, Brute-Force, Botnet, Web Attacks, Infiltration,

Byzantine

Label Type Binary (Benign/Malicious) + Multi-class (Attack Type Specific)

Replay Tool Used tcpreplay (for real-time emulation)

Use Case Suitability
Real-Time IDS, ML-based Classification, Flow Analytics,

Anomaly Detection

Open Access Yes (Downloadable from CIC official site)

Realism Level High – Enterprise simulation with real traffic profiles

Ground Truth Availability Yes – Each record labeled with attack type or benign

Common Use in Research
Real-time threat detection, flow-based classification, hybrid

learning models

Performance was checked by collecting fresh data in real time and by running the CICIDS

2018 dataset into TCPReplay. Access to the results in live situations required looking at three

significant indicators: PPT, FEL, and PFCR. How many packets a system can deal with under

high volume of traffic is shown by the Packet Processing Throughput, while also reflecting

the system’s flexibility. More than 100,000 packets were processed every second by the

network framework with effective use of multiple threads. Features are extracted in a certain

latency; RTNFE had a short latency of about 5.2 milliseconds since it captured and parsed

data at the same moment. Packet-to-Flow Completeness Ratio indicates how close the actual

flow counts are to the expected number and reveals how accurate recording over time is;

RTNFE provides a PFCR of 96.4%, so it keeps the data accuracy consistent. It has been

shown that RTNFE can be depended on, offering good performance, especially for network

oversight, spotting unusual developments, and stopping cyberattacks. The comparison of

their performance is shown in Table 3.

Table 3. Comparison of Performance

Technique / Model
Accuracy

(%)
Precision (%)

Recall

(%)

F1-

Score

(%)

RTNFE (Proposed)
98.93 99.1 98.7 98.89

(Python + Scapy + Kafka + PyShark)

Hyperparameter-Optimized

XGBoost (HO-XGB) 99.2 99.3 99 99.15

Chimphlee&Chimphlee, 2024

MLP Backpropagation (MLP-BP)
98.97 99 98 99.38

Gopalsamy, 2024

Random Forest + Deep

Autoencoder (RF + AE) 99.5 99.5 99.5 99.5

Selvam&Velliangiri, 2024

Ant Colony Optimization +

Classifier (ACO) 99 98.9 98.8 98.85

Najafi Mohsenabad & Tut, 2024

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374E-ISSN:1855-363X
VOL.23,NO.S5(2025)

2141

Figure 1. Comparison of Performance

It is very clear how well the RTNFE framework functions across the board, achieving an

accuracy of 98.93%, a precision of 99.1%, recall of 98.7%, and an F1-score of 98.89%. They

are similar or better to the popular techniques such as HO-XGB, MLP-BP, RF+AE, and

ACO. Since this framework offers instant packet usage, fast feature identification, and quick

analysis for streaming data, it works differently from the commonly used batch intrusion

detection techniques. As RTNFE combines Scapy, PyShark, and Kafka, packets are turned

into flows and at the same time, it keeps the buffering very low and the data flowing

smoothly. Thanks to its speed and powerful accuracy, it is best for data centers that show

rapid activity, main trading floors, and IoT networks, as excellent responses are fundamental

in such cases.

Network flow estimation in real time is helpful for people in security operation centers as

well as administrators. Using Intrusion Detection Systems, packets are examined to identify

threats as soon as possible and apply the required response. Besides, since it can work with

SIEM pipelines, it fits in all types of setups, including those used for web-hosting.

Still, there are some issues with the system. Even though it works well, the real-time model

depends heavily on your computer’s hardware when there is a lot of usage. Multi-gigabit

systems could run into trouble if not enough attention is given to writing parallel code.

Besides, although RTNFE manages session streams by aggregating them, it does not include

more advanced approaches to join session details and find linked or sequenced attacks. Other

experiments should be done to link deep packet inspection (DPI) with anomaly detection so

that network abnormalities can be easily identified and stopped.

Conclusion

This framework called RTNFE can serve the needs of analysis and extraction of flow-level

details for a wide range of traffic data. RTNFE can detect intrusions as soon as they happen

and group events together in no time, thanks to Python, Scapy, PyShark, and Kafka. A tool

that can deliver timestamp, IP address, port, protocol, packet or byte counts in addition to

flow duration at any time is helpful in cybersecurity now. Testing the CICIDS 2018 dataset

proves that this model is superior when it comes to accuracy (98.93%), precision (99.1%),

recall (98.7%), and F1-score (98.89%) when compared to existing models. Thanks to

RTNFE, the architecture can easily fit in the modern and fast-changing infrastructure we have

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374E-ISSN:1855-363X
VOL.23,NO.S5(2025)

2142

today. Consequently, RTNFE acts as a good base for future systems and plays an important

role in applying threat intelligence at the moment.

In the near future, firewalls will use deep learning for finding unusual activities, detailed

packet analysis, and adaptive ways to track traffic. That’s why RTNFE will learn to catch

different cyber threats by becoming more vigilant in big, fast-moving networks.

Reference

1. Jose, J., & Jose, D. V. (2023). Deep learning algorithms for intrusion detection

systems in internet of things using CIC-IDS 2017 dataset. International Journal of

Electrical and Computer Engineering (IJECE), 13(1), 1134-1141.

2. Panwar, S. S., Negi, P. S., Panwar, L. S., &Raiwani, Y. P. (2019). Implementation of

machine learning algorithms on CICIDS-2017 dataset for intrusion detection using

WEKA. International Journal of Recent Technology and Engineering Regular

Issue, 8(3), 2195-2207.

3. Kim, J., Kim, J., Kim, H., Shim, M., & Choi, E. (2020). CNN-based network

intrusion detection against denial-of-service attacks. Electronics, 9(6), 916.

4. Jairu, P., &Mailewa, A. B. (2022, May). Network anomaly uncovering on CICIDS-

2017 dataset: A supervised artificial intelligence approach. In 2022 IEEE

International Conference on Electro Information Technology (eIT) (pp. 606-615).

IEEE.

5. Bharati, M. P., & Tamane, S. (2020, October). NIDS-network intrusion detection

system based on deep and machine learning frameworks with CICIDS2018 using

cloud computing. In 2020 International Conference on Smart Innovations in Design,

Environment, Management, Planning and Computing (ICSIDEMPC) (pp. 27-30).

IEEE.

6. Khan, M. A. R., Shavkatovich, S. N., Nagpal, B., Kumar, A., Haq, M. A., Tharini, V.

J., ... & Alazzam, M. B. (2022). Optimizing hybrid metaheuristic algorithm with

cluster head to improve performance metrics on the IoT. Theoretical Computer

Science, 927, 87-97.

7. Bandarupalli, G. (2025, February). Efficient deep neural network for intrusion

detection using CIC-IDS-2017 dataset. In 2025 First International Conference on

Advances in Computer Science, Electrical, Electronics, and Communication

Technologies (CE2CT) (pp. 476-480). IEEE.

8. Jha, R. S., Ojha, K., Mishra, A., Mishra, R., & Kaushik, A. (2024, March). Cyber-

Attacks and Anomaly detection on CICIDS-2017 dataset using ER-VEC. In 2024 2nd

International Conference on Disruptive Technologies (ICDT) (pp. 1453-1458). IEEE.

9. Kilincer, I. F., Ertam, F., & Sengur, A. (2021). Machine learning methods for cyber

security intrusion detection: Datasets and comparative study. Computer

Networks, 188, 107840.

10. Najafi Mohsenabad, H., & Tut, M. A. (2024). Optimizing cybersecurity attack

detection in computer networks: A comparative analysis of bio-inspired optimization

algorithms using the CSE-CIC-IDS 2018 dataset. Applied Sciences, 14(3), 1044.

11. Selvam, R., &Velliangiri, S. (2024, March). An improving intrusion detection model

based on novel CNN technique using recent CIC-IDS datasets. In 2024 International

Conference on Distributed Computing and Optimization Techniques (ICDCOT) (pp.

1-6). IEEE.

12. Dube, R. (2024). Faulty use of the cic-ids 2017 dataset in information security

research. Journal of Computer Virology and Hacking Techniques, 20(1), 203-211.

13. Onishchenko, V., Puchkov, O., & Subach, I. (2024). Investigation of associative rule

search method for detection of cyber incidents in information management systems

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374E-ISSN:1855-363X
VOL.23,NO.S5(2025)

2143

and security events using CICIDS2018 test data set. Collection" Information

Technology and Security", 12(1), 91-101.

14. Gopalsamy, M. (2024). Predictive Cyber Attack Detection in Cloud Environments

with Machine Learning from the CICIDS 2018 Dataset. International Journal of

Scientific Research and Technology (IJSART), 10(10).

15. Khan, Z. I., Afzal, M. M., & Shamsi, K. N. (2024). A comprehensive study on CIC-

IDS2017 dataset for intrusion detection systems. Int Res J Adv Eng Hub, 2(02), 254-

260.

16. Kumar, A., & Pandey, D. (2024, July). Enhancing intrusion detection with ml and

deep learning: a survey of cicids 2017 and cse-cic-ids2018 datasets. In AIP

Conference Proceedings (Vol. 3168, No. 1). AIP Publishing.

17. Ibrahimi, K., Jouhari, M., &Jakout, Z. (2024, July). Enhancing Intrusion Detection

Systems Using Machine Learning Classifiers on the CSE-CIC-IDS2018 Dataset.

In 2024 11th International Conference on Wireless Networks and Mobile

Communications (WINCOM) (pp. 1-6). IEEE.

18. Chimphlee, W., &Chimphlee, S. (2024). Hyperparameters optimization XGBoost for

network intrusion detection using CSE-CICIDS 2018 dataset. IAES International

Journal of Artificial Intelligence, 13(1), 817-826.

19. Gopinath D, Savitha K.K., (2020), Self-Regulating Employed Bee Search With Levy

Flight Pattern Mechanism And Scout Stage With Self-Adaptive Limit Mechanism In

Artificial Bee Colony Algorithm for Solving Continuous Optimization Problems

(SRABC), Journal of Critical Reviews, Vol 7. Issue 3, 1350-1365.

