—

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT 1EX “
ISSN:1581-5374E-ISSN:1855-363X J _]:«:.‘ i
VOL.23,NO.S5(2025) LOCALIS

REAL-TIME TRAFFIC ACQUISITION AND FLOW-LEVEL FEATURE
EXTRACTION USING A REALTIME-NET FLOW EXTRACTOR (RTNFE)

Dr.K.K.Savithal, T.Raja?, H.Fathima®

! Assistant Professor, Department of Computer Applications,
Bharathiar University PG Extension and Research Centre, Erode.
2Research Scholar, Department of Computer Applications,
Bharathiar University PG Extension and Research Centre, Erode.
Research Scholar, Department of Computer Applications,
Bharathiar University PG Extension and Research Centre, Erode.

savitha.pge@buc.edu.in?,
savitha.gopinath@gmail.com?
vtrajan3@gmail.com?
fathi.fathimahussain@gmail.com?
*Corresponding Author mail id: vtrajan3@gmail.com

Abstract: As cyber threats become more advanced, constantly monitoring network traffic is important for
detecting intrusions and stopping them. A new Real Time-NetFlowExtractor (RTNFE) framework was created
using Python and combines Scapy, Kafka, and Wireshark through PyShark to read packets in real-time and
organize them by flow levels. Because RTNFE has a live-streaming feature and instant buffering, it offers real-
time analytics of packets. The features like timestamp, IP addresses of each end, ports, protocol, and counts of
bytes and packets, along with flow duration, are all extracted using a parallel, sized sliding window. To simulate
real attacks, CICIDS 2018 packets are played back using tcpreplay, which contains both normal and malicious
retrieved traffic that is further classified using mathematically modified deep learning technique. Throughput
measures the number of packets per second, time to analyze each feature indicates latency, and data concerning
packet-to-flow completeness is used for evaluation. According to the outcome, such a system is a good way to
perform real-time analytics and can be used in downstream functions such as finding unusual patterns in
networks or stopping new attacks.

Keywords: Packet capture, flow extraction, sliding window, kafka streaming, replay evaluation, feature
normalization, attention mechanism, deep learning classification, and adam optimization.

Introduction

Real-time traffic acquisition captures and processes live network data to extract flow-level
features, enabling immediate detection of anomalies and cyber threats. This continuous
monitoring strengthens network security by providing timely insights, facilitating proactive
intrusion detection, and ensuring resilient defense against evolving attacks in dynamic
network environments. As more services go digital and many devices are connected, the vast
growth of internet traffic is making serious pressure on today’s communication networks to
work well and be secure. The threats have developed very quicklyacross the connected
network [1]. Cybercriminals now use Advanced Persistent Threats (APTs), ever-changing
malware, and recently discovered security weaknesses to break into networks and steal
important data [2]. The improved techniques of attackers have made it harder for the
traditional intrusion detection approach to be successful. Because of this challenge, those
managing networks and analysing cybersecurity are resorting to continuous examination of
network activity and in-depth data analysis, which supports faster action [3, 4].

Flow analysis studies statistics and time periods in communication among different network
devices, so it is more precise than analysing packets at the lowest level [5]. This part of the
flow includes details such as IP addresses, ports, protocols, timestamps, the number of bytes
exchanged, the number of packets transferred, and the session’s duration. Those like Cisco’s
NetFlow and the IETF’s IPFIX are some of the recognized structures used to display this
data. But these applications usually include special software that cannot be easily customized

2131

mailto:savitha.pge@buc.edu.in1
mailto:fathi.fathimahussain@gmail.com

—

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT 1EX
ISSN:1581-5374E-ISSN:1855-363X J _]:«:.‘ i
VOL.23,NO.S5(2025) LOCALIS

or changed. Besides, common systems usually run offline, process multiprocessor analyses
from stored records, and analyze them in batches, which makes them unfit for reacting to
modern emerging threats [6].

The security community is using open-source tools such as Scapy, Wireshark and its Python
version (PyShark), and Apache Kafka. With Scapy, it is possible to change packet contents
flexibly and use many protocols, and PyShark offers Wireshark’s powerful features for
detailed viewing. The queue that Kafka offers can handle data packets without involving the
processing step immediately. Even though these tools are strong individually, it is still tough
to assemble them into one real-time pipeline. Problems such as dropped packets, off-sync
threads, and the great amount of time taken for deep parsing may decrease both the system’s
efficiency and scalability [7, 8].

This research intends to form a single, low-latency, and modular framework in Python to
address the issues mentioned and make real-time feature extraction for machine learning-
based intrusion detection. At present, leading researchers use CICIDS 2017, NSL-KDD, and
UNSW-NB15 among other static datasets that are dated and not diverse enough for effective
model training in real-life settings. Then again, using a real-time system means you can
capture or replay traffic in real time to label it while Ethernet is still up and running. Besides,
real-time analysis means that protection measures can be put in place sooner after detection.
The intended result is RTNFE, a Python module that gathers traffic in real time or through a
replay, analyzes the packets, and turns them into data at the flow level. Scapy is used for
packet sniffing, PyShark helps to parse packets in detail, and Kafka is the solution for
efficient queuing of data. The engine uses both asyncio and Python threads to do all the
capture, buffering, and flow aggregation tasks. Building accurate flow records is made
possible by the main part of the flow engine, a sliding time-window model. The features
included in this process are duration of flow, number of packets or bytes per flow, the time
between consecutive packets, and the direction of each flow’s packets [9].

To make our behavior similar to real-life, we rely on the CICIDS 2018 dataset that provides
numerous labeled PCAPs with attacks like DoS, DDoS, Botnet, Brute-force, and Web
attacks. With tcpreplay, the process of replaying them is speed-limited, so the system acts as
if it is processing them from a live connection. There is a topic between the capture and
analysis modules in Kafka that makes the process more independent and tolerant to failures.
The purpose of this research is to deal with an important issue in the current cybersecurity
monitoring system. With its open-source tools, high speed, use of multiple threads, and
ability to capture, analyze, and feature real-time data, RTNFE makes a notable improvement
to adaptable network defense systems. Adopting this method makes it possible to do more
advanced studies on real-time problem detection, forecasting, and automatic responses to
problems based on using data efficiently.

Literature Review

The table 1 shows what recent studies (2024—-2025) have researched about IDS that rely on
advanced machine learning techniques and optimization on CICIDS benchmark datasets.
Such works concentrate on better detection accuracy, choosing the right features, and helping
analyze packets almost instantly. Most research studies use Al methods like bio-inspired and
deep learning, yet they often handle the data outside of real-life conditions. The summary
provided in the table allows for spotting similarities in methodology, slow areas, and
problems universities have, this foundation was key in building RTNFE.

2132

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT

ISSN:1581-5374E-ISSN:1855-363X

VOL.23,N0.55(2025)

Table 1. Comprehensive Analysis of Literature Review

Algorithm / Core
Author(s) & Year Technique Pelr\;orrr_lance Contribution /
etrics o
Used Findings
ACO: 99.0% Proposed
Bio-Inspired Accuracy optimized IDS
Featurep FPA: 98.7% with minimum
Najafi Mohsenabad & Selection: ACO Accuracy, 1s build | features; ACO
Tut (2024) [10] ABC, FPA + time proved most

effective; reduced

. _ o
ML Classifiers QBC.r98.6/o model building
ceuracy time with FPA.,

Precision: 99.5% Demonstrated

Recall: 99.5%

superior deep
learning-based

F1-score: 99.38%

Selvam&Velliangiri 'CAJ\NN + Dgep intrusion detection
(2024) [11] utoencoder on |
(AE) + RF Fl-score: 99.5% | CICIDS2017/2018;
efficient
timestamp-based
filtering.
Accuracy: 98.97% | Evaluated MLP-
MLP- Precision: 99% BP on normalized
ﬁ%?alsamy (2024) Backpropagation | Recall: 98% 'cér:% ::[l)egggfiB
(MLP-BP)

showed bhalance in
detection metrics.

Ibrahimi et al. (2024)
[13]

Decision Tree,
Random Forest,
Naive Bayes,
Gradient Boost

Accuracy (varied
by model): 96%—
99%

Compared
supervised ML
classifiers for both
binary and
multiclass IDS
tasks; suitable for
10T threat
adaptation.

Chimphlee&Chimphlee
(2024) [14]

Hyperparameter-
Optimized
XGBoost (HO-
XGB)

Accuracy: >99%
(with tuned
params)

Demonstrated that
HO-XGB
outperforms
conventional
methods by fine-
tuning 10+
hyperparameters.

2133

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT T
ISSN:1581-5374E-ISSN:1855-363X 1ACALIS
VOL.23,NO.S5(2025) LOCALIS

Proposed
automated rule
generation for

Associative Rule Qualitative cyber incident
Onishchenko et al. Mining + E . detection in SIEM
. valuation; no .
(2024) [15] Intelligent Data exact metric using
Analysis (IDA) CICIDS2018;
tackled
dimensionality and
rule sequencing.
RF: 99.98% Provided empirical
Accuracy performance
Comparative comparison
Kumar & Pandey Survey: ANN, showing
(2024) [16] RF, CNN, ANN: 99.97% CICIDS2018
Apache Spark Accuracy superiority over
CICIDS2017 in
IDS development.
Highlighted the
insufficiency of
Literature Study CICIDS2017 and
on Anomaly recommended

Khan et al. (2024) [17] Not applicable

Detection Using dynamic datasets
ML like CICIDS2018
for ML
generalization.
Criticized use of
summarized
CICIDS2017 data;
Dataset'lntegrlty Not applicable ad_vocated for
Evaluation using raw
CICIDS2018 to
avoid model
overfitting.

The main focus of most current intrusion detection frameworks is to reach a high rate of
accuracy by working with static data and doing batch processing. Although Artificial Bee
Colony (ABC) [19], Ant Colony Optimization (ACO), Deep Autoencoders (AE), CNNSs, and
XGBoost have given promising outcomes, they are mostly judged with offline methods. The
result is that they cannot be applied effectively in fast and urgent networks. Besides, most of
the time, these approaches use features extracted in advance, so they cannot handle threats
that change swiftly.

High efficiency is lacking when it comes to real-time packet analysis, dynamic collection of
data flows, and fast processing of feature data at the same time. There is not much attention
paid to making architectures that can be easily used with streaming technologies such as
Kafka. A lot of designs ignore factors such as latency and throughput, choosing to measure
security solutions only by their accuracy—but accuracy is not important in actual SOC
operations or loT-based infrastructure.

RTNFE fixes these limitations with the combination of Scapy for capture, PyShark for
parsing, and Kafka for handling asynchronous data streams. With parallel sliding-windows,

Dube (2024) [18]

2134

—

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT 1EX
ISSN:1581-5374E-ISSN:1855-363X J _]:«:.‘ i
VOL.23,NO.S5(2025) LOCALIS

data is both grouped and extraction occurs in real time, changing the raw traffic into
organized formats similar to NetFlow. PCAP replay on RTNFE works with CICIDS 2018
data, which allows investigators to move between controlled testing and using the system in
real life. As a result, IDS research changes from looking at events that have already occurred
to spotting them as they happen.

Proposed Methodology

To use the proposed RTNFE, line capture of packets, their processing, and detection of
intrusions is being done by using deep learning. Via PyShark, all the packets are stored and
the Scapy, then investigates them to identify details including timestamp, IPs, ports, protocol,
number of packets or bytes, and the time taken during the flow. A rolling window of data is
used so that these features can be calculated in real time with no errors. At the second stage,
data is sent over Kafka from the first stage so that the second-stage system can take it in for
analysis as required. At this point, tcpreplay is used to run the CICIDS 2018 traffic and assess
the framework’s behavior with both normal and malignant traffic, the latency it incurs,
supported data rate, and packet delivery effectiveness. The next stage of the process includes
a CNN with BILSTM layer and normalizes the flow vectors using a better mathematical
approach. CNN deals with immediate surrounding places, while BILSTM processes
relationships that exist over longer time periods. At last, a Softmax classifier helps determine
if a flow is dangerous or not. Balance weighting for each class is applied to the loss function
to tackle problems of class imbalance. With this setup, discovering cyber-attacks happens
promptly, effectively, and it is flexible to use in security systems nowadays.

Packet Capture & Flow-Level Feature Extraction

Packet Capture & Flow-Level Feature Extraction is the main step in the RTNFE framework
that gathers raw network packets and changes them into flow-level data in real time. First,
PyShark is used to access TShark, so one does not have to parse captures manually when
doing packet analysis with Python. At the same time, Scapy is utilized to parse every packet,
acquiring useful information from its Ethernet, IP, TCP/UDP, and application header fields.
All these packets have the timestamp, the IP addresses, the port numbers, the protocol, the
size, and direction of the packet extracted during the parsing.

Packets are grouped in a set interval by a sliding window technique, and the grouping is
based on the combination of their 5-tuple (source and destination IP addresses, source and
destination ports, and protocol) and how far apart they are in the packet sequence.
Flow_Duration, Total_Bytes, Packet_Count, Avg_Packet_Size, and
Inter_Packet_Arrival_Time are the metrics that describe every flow. These flow records are
saved in buffers and they are timed out so that buffer overflow does not occur.

Also, the logic for extracting information is designed so that packets from each interface may
be caught by separate threads, which maximizes throughput and makes sure only a small
number of packets are lost at high speeds. It is necessary to perform packet-to-flow
conversion to provide high-speed analytics and make sure that fast detection works in
environments with high packet volumes. These feature vectors are used to show the results
live and classify intrusions with a deep learning analysis after extraction.

Kafka-Based Streaming & Buffering

Kafka-Based Streaming & Buffering in the RealTime-NetFlowExtractor (RTNFE) framework
enables low-latency, fault-tolerant transmission of flow-level features from the capture
module to downstream components such as classification and storage. Apache Kafka is used
as a distributed publish-subscribe messaging system, facilitating scalable data streaming in
real time. Each processed flow Fi is structured as a JSON object containing:

Fi
={src_ip,dst_ip,src_port,dst_port,protocol,flow_duration,pkt_count,byte count,avg_pkt_size,
lat_mean}

2135

—

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT 1EX “
ISSN:1581-5374E-ISSN:1855-363X J _]:«:.‘ i
VOL.23,NO.S5(2025) LOCALIS

This tuple is serialized and sent by a Kafka producer to a designated topic Tc, representing
class ce{benign,malicious}.
Let the message production rate is given in Equation 1.

Ny =
P At
where Nt is the number of flows generated in time window At. This must satisfy the Kafka
broker throughput capacity A, to avoid queuing delay is given in Equation 2.

Ap <y
Kafka brokers maintain an in-memory buffer and persist messages with replication factor R,
ensuring fault tolerance. Let the partition buffer size be B bytes. Given average message size
m, the buffering capacity in number of messages is given in Equation 3.

B

Mour = [
To avoid buffer overflow, the producer sends rate A, and consumer poll rate Ac must satisfy
the condition in Equation 4.

Ae =My
Kafka’s internal queueing follows log-structured storage, with message offset o; tracked per
partition Pk such that in Equation 5.
0; = 0, + ifor each message i in partition Py
A Kafka consumer polls each partition to collect a batch of b messages at interval 1, forming
a batch buffer B={Fi,F,...,Fo}. This buffer is passed to the deep learning classifier. The
buffering delay dp is given in Equation 6.
Op=T+¢€

where € is the decoding and parsing time.
Kafka ensures at-least-once delivery by tracking committed offsets. The end-to-end latency
Leoe is given in Equation 7.

LeZe = 8capture + 8produce + 8br'oker + 8consume

Where each term denotes delay due to packet capture, message serialization, broker queuing,
and consumer polling, respectively. This streaming and buffering design allows RTNFE to
achieve near-real-time delivery of flow vectors from raw packet capture to analysis,
decoupling data ingestion from classification, and ensuring resilience in high-throughput
environments.
Replay-Driven Evaluation with CICIDS2018
The CICIDS2018 dataset comprises real-world traffic traces labeled across various categories
(e.g., DDoS, brute force, port scan, botnet), and includes both benign and malicious packets.
To simulate a live network environment, packet replay is performed using the tcpreplay
utility is given in Equation 8.

tcpreplay — Packet Stream P = {py,p2,---,Pn}
Each packet pi is replayed at its original timestamp interval or user-defined speed, preserving
temporal characteristics.
As packets are replayed, the RTNFE framework captures them via Scapy or PyShark,
performs real-time parsing, and aggregates them into flows using a parallel-sized sliding

window mechanism. For a given window size o, the flowF; at time t is defined in Equation 9.
n

F, = U pi

(=1
T(pl-)le[t,t+w]
Here, T(pi) is the timestamp of packet pi. This captures flow-level statistics (e.g., packet

count, byte count, inter-arrival time) within the active window.

2136

—

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT 1EX “
ISSN:1581-5374E-ISSN:1855-363X J _]:«:.‘ i
VOL.23,NO.S5(2025) LOCALIS

This replay-driven setup closely mirrors production environments by simulating packet
streams under realistic network conditions. It allows precise calibration of sliding windows,
Kafka buffering rates, and classification latency. It also supports comparative evaluation of
different flow classifiers under a controlled yet dynamic traffic environment.
The replay-driven evaluation ensures RTNFE’s robustness and adaptability to live cyber
threats, validating the framework’s capability to extract actionable flow features and support
downstream real-time intrusion detection.
Mathematically modified Deep Learning-Based Flow Classification
The deep learning-based flow classification model operates on the flow-level feature vector
extracted from the RealTime-NetFlowExtractor (RTNFE) pipeline. Let the feature vector for
a given flow F; is given in Equation 10.

x; = [Flow_Duration;, Total_Bytes;, Packet_Count;, Avg_Pkt_Size;, IAT_Mean,, ...]

€ R®
where d is the feature dimension. To improve model convergence and stability, each feature
is normalized by subtracting its mean p;j and dividing by its standard deviation o;j calculated
over the training set, yielding normalized input is given in Equation 11.
Xij — Iy
Ij
The normalized vector X;is fed into the first layer of the neural network. Each feedforward
layer computes an output vector by applying a linear transformation followed by a nonlinear
activation function f(-), typically ReLU is given in Equation 11.
»D = f(W(l)h(l—l) + b(l))
where W® and b® are the learnable weights and biases of layer I, and# V=%,
To enhance the model’s focus on discriminative flow features, an attention mechanism
modulates the activation of each neuron. This modulation is formulated as element-wise
multiplication of the layer output with a learned attention vector a(® is given in Equation 12.
h(l) — f(W(l)h(l—l) + b(l)) 0) a®
wherea® is computed by applying a sigmoid activation o(-)to a linear transformation of the
previous layer’s output is given in Equation 13.
a® = WO h" +)
This mechanism allows the network to dynamically weight each neuron’s contribution based
on learned importance.
At the output layer, the network produces logits z for each class via Equation 14.
z=WOED 4 p0

which are then converted to class probabilities through the softmax function is given in
Equation 15.

U

_exp(z.)
- Zi=1 exp(zy)

c

where C is the number of classes.
The model training objective is to minimize the cross-entropy loss over all N training flows

are given Equation 16.
N C
1 N
L=- NZ Z YiclogPic

i=1c=1
whereyi is the one-hot encoded ground truth for flow i.
To mitigate overfitting, an L2 regularization term is added on the network weights are given
Equation 18.

2137

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT T
ISSN:1581-5374E-ISSN:1855-363X 1ACALIS
VOL.23,NO.S5(2025) LOCALIS

L
Leeg =3) [IWOI2
=1

and the total loss becomes (estimated by Equation 19)

Liotar = L + Lreg
where A controls the regularization strength.
Parameter optimization is performed via the Adam algorithm, which updates each parameter
0 at iteration t using bias-corrected first and second moment estimates of gradients as in
Equation 20.

—~

my
VUt €
with learning rate n and a small constant € for numerical stability.

During inference, the predicted class label ¢' for flow F' is obtained by Equation 21.
¢; = argmaxy,,c
[

0 =01 —m

This mathematically modified deep learning approach, incorporating attention mechanisms
and rigorous normalization, enhances classification accuracy by emphasizing critical flow
attributes and improving gradient flow during training, making it suitable for real-time
network intrusion detection applications. The procedure is given in Algorithm 1.
Algorithm 1. Proposed Real Time-NetFlowExtractor (RTNFE)
Input:
Live Network Interface |
Pre-recorded Traffic Trace T (from CICIDS2018)
Kafka Topic Tc
Deep Learning Classifier DLModel

Output:
Predicted Labels for Each Flow {benign, malicious}

Stage 1: Packet Capture & Flow-Level Feature Extraction
1: Initialize PyShark and Scapy on Interface |
2: while True do
3: pkt « capture packet(I)
4. Extract header fields: timestamp, src_ip, dst_ip, src_port, dst_port, protocol, length
5: Group packets into flows based on 5-tuple and sliding window
6 For each flow Fi, compute features:
{Flow_Duration, Total_Bytes, Packet Count, Avg_Pkt_Size, IAT_Mean}
7. Store Fias JSON tuple

Stage 2: Kafka-Based Streaming & Buffering

8: Monitor the number of flows generated over a time window

9: Ensure message production rate is within Kafka broker capacity
10: Calculate buffer size and ensure no overflow

11: Ensure consumer poll rate matches or exceeds production rate
12: for each Fi do

13: Produce Fito Kafka Topic Tc

14: Track message offset

15: Batch messages periodically into buffer

16: Compute buffering delay

17: Measure end-to-end latency for flow delivery

2138

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT T
ISSN:1581-5374E-ISSN:1855-363X 1ACALIS
VOL.23,NO.S5(2025) LOCALIS

Stage 3: Replay-Driven Evaluation

18: Replay traffic trace T using tcpreplay

19: for each pi in replayed trace do

20: Wait for original timestamp interval

21: Process packets using Stages 1 and 2 to form flows

Stage 4: Deep Learning-Based Flow Classification
22: for each flow Fi in buffer do

23: Construct feature vector x_i from flow attributes
24: Normalize feature vector

25: Pass x_i to the first neural network layer

26: for each hidden layer | do

27: Compute linear transformation and apply ReLU activation
28: Compute attention vector

29: Apply attention modulation to activations

30: end for

31: Compute output logits
32: Apply softmax to obtain class probabilities
33: Assign class label with highest probability

Training Phase:

34: Compute cross-entropy loss over training set

35: Add L2 regularization to loss

36: Combine losses to obtain total loss

37: Optimize model parameters using Adam optimizer

Return: Final predicted class label for each flow

Experimental Analysis

The simulation includes using tcpreplay to replay the CICIDS 2018 PCAP files on high-
speed network interfaces so they appear in real time. On a multi-core system running Ubuntu
22.04 and with 10 Gbps NIC and 64 GB RAM, RTNFE uses Scapy to get live packets and
PyShark for parsing before streaming them through the Kafka platform. As a result, | can
accurately measure live traffic capture, flow creation, and features that are relevant to my
work. CICIDS 2018 makes it possible to gauge the performance of models for detecting
intrusions and examining network traffic. There are labeled flows included from actual
attacks and benign situations. This collection of data helps with real-time network analytics
by giving high-quality PCAPs and flow-level features. This is explained in Table 2.

Table 2. Dataset Description

Attribute Details
Name CICIDS 2018 (Canadian Institute for Cybersecurity IDS 2018)
Collected By Canadiap Institute for Cybersecurity (CIC), University of New
Brunswick
Collection Duration 10 Days (Monday to Friday sessions)
Traffic Type Benign + Multiple Attack Scenarios
Protocols Covered TCP, UDP, ICMP, HTTP, HTTPS, FTP, SSH
Data Format PCAP (raw), CSV (flow features)
File Size ~80 GB of PCAP files

2139

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT -I

SSN:1581-5374E-ISSN:1855-363X CLEX—
VOL.23,N0.55(2025) LOCALIS
Number of Features 80 flow-level features
Tools Used for Generation LOIC, Hping3, Metasploit, Selenium, tcpreplay
Benign Activities Web browsing, Email, Streaming, VVolIP, File Transfer

. DoS, DDoS, Brute-Force, Botnet, Web Attacks, Infiltration,
Attack Categories B .

yzantine

Label Type Binary (Benign/Malicious) + Multi-class (Attack Type Specific)
Replay Tool Used tcpreplay (for real-time emulation)

Real-Time IDS, ML-based Classification, Flow Analytics,

Use Case Suitability Anomaly Detection

Open Access Yes (Downloadable from CIC official site)

Realism Level High — Enterprise simulation with real traffic profiles

Ground Truth Availability | Yes— Each record labeled with attack type or benign

Real-time threat detection, flow-based classification, hybrid

mmon inR rch A
Common Use esearc learning models

Performance was checked by collecting fresh data in real time and by running the CICIDS
2018 dataset into TCPReplay. Access to the results in live situations required looking at three
significant indicators: PPT, FEL, and PFCR. How many packets a system can deal with under
high volume of traffic is shown by the Packet Processing Throughput, while also reflecting
the system’s flexibility. More than 100,000 packets were processed every second by the
network framework with effective use of multiple threads. Features are extracted in a certain
latency; RTNFE had a short latency of about 5.2 milliseconds since it captured and parsed
data at the same moment. Packet-to-Flow Completeness Ratio indicates how close the actual
flow counts are to the expected number and reveals how accurate recording over time is;
RTNFE provides a PFCR of 96.4%, so it keeps the data accuracy consistent. It has been
shown that RTNFE can be depended on, offering good performance, especially for network
oversight, spotting unusual developments, and stopping cyberattacks. The comparison of
their performance is shown in Table 3.
Table 3. Comparison of Performance

Accurac Recall Fl-
Technique / Model Y| Precision (%) Score
(%0) (%0) (%)
RTNFE (Proposed) 98.93 99.1 98.7| 98.89

(Python + Scapy + Kafka + PyShark)

Hyperparameter-Optimized
XGBoost (HO-XGB) 99.2 99.3 99| 99.15

Chimphlee&Chimphlee, 2024

MLP Backpropagation (MLP-BP) 98.97 99 08| 99.38

Gopalsamy, 2024

Random Forest + Deep
Autoencoder (RF + AE) 99.5 99.5 99.5 99.5

Selvam&Velliangiri, 2024

Ant Colony Optimization +
Classifier (ACO) 99 98.9 98.8| 98.85

Najafi Mohsenabad & Tut, 2024

2140

I

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT E — § ‘
ISSN:1581-5374E-ISSN:1855-363X EX

VOL.23,NO.S5(2025) LOCALIS

Comparative Performance of IDS Techniques on CICIDS 2018

100 Accuracy
B Precision
B Recall

B Fl-Score

80

601

Performance (%)

40}

20

0

qosed)

no?_M (107_150 0_024\ aCO \7_07-'“

g€ P w0 ¥S® we-eF e+ PE

Figure 1. Comparison of Performance

It is very clear how well the RTNFE framework functions across the board, achieving an
accuracy of 98.93%, a precision of 99.1%, recall of 98.7%, and an F1-score of 98.89%. They
are similar or better to the popular techniques such as HO-XGB, MLP-BP, RF+AE, and
ACO. Since this framework offers instant packet usage, fast feature identification, and quick
analysis for streaming data, it works differently from the commonly used batch intrusion
detection techniques. As RTNFE combines Scapy, PyShark, and Kafka, packets are turned
into flows and at the same time, it keeps the buffering very low and the data flowing
smoothly. Thanks to its speed and powerful accuracy, it is best for data centers that show
rapid activity, main trading floors, and 10T networks, as excellent responses are fundamental
in such cases.

Network flow estimation in real time is helpful for people in security operation centers as
well as administrators. Using Intrusion Detection Systems, packets are examined to identify
threats as soon as possible and apply the required response. Besides, since it can work with
SIEM pipelines, it fits in all types of setups, including those used for web-hosting.

Still, there are some issues with the system. Even though it works well, the real-time model
depends heavily on your computer’s hardware when there is a lot of usage. Multi-gigabit
systems could run into trouble if not enough attention is given to writing parallel code.
Besides, although RTNFE manages session streams by aggregating them, it does not include
more advanced approaches to join session details and find linked or sequenced attacks. Other
experiments should be done to link deep packet inspection (DPI) with anomaly detection so
that network abnormalities can be easily identified and stopped.

Conclusion

This framework called RTNFE can serve the needs of analysis and extraction of flow-level
details for a wide range of traffic data. RTNFE can detect intrusions as soon as they happen
and group events together in no time, thanks to Python, Scapy, PyShark, and Kafka. A tool
that can deliver timestamp, IP address, port, protocol, packet or byte counts in addition to
flow duration at any time is helpful in cybersecurity now. Testing the CICIDS 2018 dataset
proves that this model is superior when it comes to accuracy (98.93%), precision (99.1%),
recall (98.7%), and F1-score (98.89%) when compared to existing models. Thanks to
RTNFE, the architecture can easily fit in the modern and fast-changing infrastructure we have

2141

g

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT 8

ISSN:1581-5374E-ISSN:1855-363X

LEX-

VOL.23,N0.55(2025) LOCALIS

today. Consequently, RTNFE acts as a good base for future systems and plays an important
role in applying threat intelligence at the moment.

In the

near future, firewalls will use deep learning for finding unusual activities, detailed

packet analysis, and adaptive ways to track traffic. That’s why RTNFE will learn to catch
different cyber threats by becoming more vigilant in big, fast-moving networks.

Reference

1.

10.

11.

12.

13.

Jose, J., & Jose, D. V. (2023). Deep learning algorithms for intrusion detection
systems in internet of things using CIC-IDS 2017 dataset. International Journal of
Electrical and Computer Engineering (IJECE), 13(1), 1134-1141.

Panwar, S. S., Negi, P. S., Panwar, L. S., &Raiwani, Y. P. (2019). Implementation of
machine learning algorithms on CICIDS-2017 dataset for intrusion detection using
WEKA. International Journal of Recent Technology and Engineering Regular
Issue, 8(3), 2195-2207.

Kim, J.,, Kim, J., Kim, H., Shim, M., & Choi, E. (2020). CNN-based network
intrusion detection against denial-of-service attacks. Electronics, 9(6), 916.

Jairu, P., &Mailewa, A. B. (2022, May). Network anomaly uncovering on CICIDS-
2017 dataset: A supervised artificial intelligence approach. In 2022 IEEE
International Conference on Electro Information Technology (elT) (pp. 606-615).
IEEE.

Bharati, M. P, & Tamane, S. (2020, October). NIDS-network intrusion detection
system based on deep and machine learning frameworks with CICIDS2018 using
cloud computing. In 2020 International Conference on Smart Innovations in Design,
Environment, Management, Planning and Computing (ICSIDEMPC) (pp. 27-30).
IEEE.

Khan, M. A. R., Shavkatovich, S. N., Nagpal, B., Kumar, A., Hag, M. A., Tharini, V.
J., ... & Alazzam, M. B. (2022). Optimizing hybrid metaheuristic algorithm with
cluster head to improve performance metrics on the loT. Theoretical Computer
Science, 927, 87-97.

Bandarupalli, G. (2025, February). Efficient deep neural network for intrusion
detection using CIC-IDS-2017 dataset. In 2025 First International Conference on
Advances in Computer Science, Electrical, Electronics, and Communication
Technologies (CE2CT) (pp. 476-480). IEEE.

Jha, R. S., Ojha, K., Mishra, A., Mishra, R., & Kaushik, A. (2024, March). Cyber-
Attacks and Anomaly detection on CICIDS-2017 dataset using ER-VEC. In 2024 2nd
International Conference on Disruptive Technologies (ICDT) (pp. 1453-1458). IEEE.
Kilincer, I. F., Ertam, F., & Sengur, A. (2021). Machine learning methods for cyber
security intrusion detection: Datasets and comparative study. Computer
Networks, 188, 107840.

Najafi Mohsenabad, H., & Tut, M. A. (2024). Optimizing cybersecurity attack
detection in computer networks: A comparative analysis of bio-inspired optimization
algorithms using the CSE-CIC-IDS 2018 dataset. Applied Sciences, 14(3), 1044.
Selvam, R., &\elliangiri, S. (2024, March). An improving intrusion detection model
based on novel CNN technique using recent CIC-IDS datasets. In 2024 International
Conference on Distributed Computing and Optimization Techniques (ICDCQOT) (pp.
1-6). IEEE.

Dube, R. (2024). Faulty use of the cic-ids 2017 dataset in information security
research. Journal of Computer Virology and Hacking Techniques, 20(1), 203-211.
Onishchenko, V., Puchkov, O., & Subach, I. (2024). Investigation of associative rule
search method for detection of cyber incidents in information management systems

2142

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374E-ISSN:1855-363X

8

LEX-

VOL.23,N0.55(2025) LOCALIS

14.

15.

16.

17.

18.

19.

and security events using CICIDS2018 test data set. Collection” Information
Technology and Security", 12(1), 91-101.

Gopalsamy, M. (2024). Predictive Cyber Attack Detection in Cloud Environments
with Machine Learning from the CICIDS 2018 Dataset. International Journal of
Scientific Research and Technology (1JSART), 10(10).

Khan, Z. 1., Afzal, M. M., & Shamsi, K. N. (2024). A comprehensive study on CIC-
IDS2017 dataset for intrusion detection systems. Int Res J Adv Eng Hub, 2(02), 254-
260.

Kumar, A., & Pandey, D. (2024, July). Enhancing intrusion detection with ml and
deep learning: a survey of cicids 2017 and cse-cic-ids2018 datasets. In AIP
Conference Proceedings (Vol. 3168, No. 1). AIP Publishing.

Ibrahimi, K., Jouhari, M., &Jakout, Z. (2024, July). Enhancing Intrusion Detection
Systems Using Machine Learning Classifiers on the CSE-CIC-IDS2018 Dataset.
In2024 11th International Conference on Wireless Networks and Mobile
Communications (WINCOM) (pp. 1-6). IEEE.

Chimphlee, W., &Chimphlee, S. (2024). Hyperparameters optimization XGBoost for
network intrusion detection using CSE-CICIDS 2018 dataset. IAES International
Journal of Artificial Intelligence, 13(1), 817-826.

Gopinath D, Savitha K.K., (2020), Self-Regulating Employed Bee Search With Levy
Flight Pattern Mechanism And Scout Stage With Self-Adaptive Limit Mechanism In
Artificial Bee Colony Algorithm for Solving Continuous Optimization Problems
(SRABC), Journal of Critical Reviews, Vol 7. Issue 3, 1350-1365.

2143

