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Abstract: As cyber threats become more advanced, constantly monitoring network traffic is important for 

detecting intrusions and stopping them. A new RealTime-NetFlowExtractor (RTNFE) framework was created 

using Python and combines Scapy, Kafka, and Wireshark through PyShark to read packets in real-time and 

organize them by flow levels. Because RTNFE has a live-streaming feature and instant buffering, it offers real-

time analytics of packets. The features like timestamp, IP addresses of each end, ports, protocol, and counts of 
bytes and packets, along with flow duration, are all extracted using a parallel, sized sliding window. To simulate 

real attacks, CICIDS 2018 packets are played back using tcpreplay, which contains both normal and malicious 

retrieved traffic that is further classified using mathematically modified deep learning technique. Throughput 

measures the number of packets per second, time to analyze each feature indicates latency, and data concerning 

packet-to-flow completeness is used for evaluation. According to the outcome, such a system is a good way to 

perform real-time analytics and can be used in downstream functions such as finding unusual patterns in 

networks or stopping new attacks. 

 

Keywords: Packet capture, flow extraction, sliding window, kafka streaming, replay evaluation, feature 

normalization, attention mechanism, deep learning classification, and adam optimization. 

 

Introduction 

Real-time traffic acquisition captures and processes live network data to extract flow-level 

features, enabling immediate detection of anomalies and cyber threats. This continuous 

monitoring strengthens network security by providing timely insights, facilitating proactive 

intrusion detection, and ensuring resilient defense against evolving attacks in dynamic 

network environments. As more services go digital and many devices are connected, the vast 

growth of internet traffic is making serious pressure on today’s communication networks to 

work well and be secure. The threats have developed very quicklyacross the connected 

network [1]. Cybercriminals now use Advanced Persistent Threats (APTs), ever-changing 

malware, and recently discovered security weaknesses to break into networks and steal 

important data [2]. The improved techniques of attackers have made it harder for the 

traditional intrusion detection approach to be successful. Because of this challenge, those 

managing networks and analysing cybersecurity are resorting to continuous examination of 

network activity and in-depth data analysis, which supports faster action [3, 4].  

Flow analysis studies statistics and time periods in communication among different network 

devices, so it is more precise than analysing packets at the lowest level [5]. This part of the 

flow includes details such as IP addresses, ports, protocols, timestamps, the number of bytes 

exchanged, the number of packets transferred, and the session’s duration. Those like Cisco’s 

NetFlow and the IETF’s IPFIX are some of the recognized structures used to display this 

data. But these applications usually include special software that cannot be easily customized 
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or changed. Besides, common systems usually run offline, process multiprocessor analyses 

from stored records, and analyze them in batches, which makes them unfit for reacting to 

modern emerging threats [6]. 

The security community is using open-source tools such as Scapy, Wireshark and its Python 

version (PyShark), and Apache Kafka. With Scapy, it is possible to change packet contents 

flexibly and use many protocols, and PyShark offers Wireshark’s powerful features for 

detailed viewing. The queue that Kafka offers can handle data packets without involving the 

processing step immediately. Even though these tools are strong individually, it is still tough 

to assemble them into one real-time pipeline. Problems such as dropped packets, off-sync 

threads, and the great amount of time taken for deep parsing may decrease both the system’s 

efficiency and scalability [7, 8]. 

This research intends to form a single, low-latency, and modular framework in Python to 

address the issues mentioned and make real-time feature extraction for machine learning-

based intrusion detection. At present, leading researchers use CICIDS 2017, NSL-KDD, and 

UNSW-NB15 among other static datasets that are dated and not diverse enough for effective 

model training in real-life settings. Then again, using a real-time system means you can 

capture or replay traffic in real time to label it while Ethernet is still up and running. Besides, 

real-time analysis means that protection measures can be put in place sooner after detection. 

The intended result is RTNFE, a Python module that gathers traffic in real time or through a 

replay, analyzes the packets, and turns them into data at the flow level. Scapy is used for 

packet sniffing, PyShark helps to parse packets in detail, and Kafka is the solution for 

efficient queuing of data. The engine uses both asyncio and Python threads to do all the 

capture, buffering, and flow aggregation tasks. Building accurate flow records is made 

possible by the main part of the flow engine, a sliding time-window model. The features 

included in this process are duration of flow, number of packets or bytes per flow, the time 

between consecutive packets, and the direction of each flow’s packets [9]. 

To make our behavior similar to real-life, we rely on the CICIDS 2018 dataset that provides 

numerous labeled PCAPs with attacks like DoS, DDoS, Botnet, Brute-force, and Web 

attacks. With tcpreplay, the process of replaying them is speed-limited, so the system acts as 

if it is processing them from a live connection. There is a topic between the capture and 

analysis modules in Kafka that makes the process more independent and tolerant to failures. 

The purpose of this research is to deal with an important issue in the current cybersecurity 

monitoring system. With its open-source tools, high speed, use of multiple threads, and 

ability to capture, analyze, and feature real-time data, RTNFE makes a notable improvement 

to adaptable network defense systems. Adopting this method makes it possible to do more 

advanced studies on real-time problem detection, forecasting, and automatic responses to 

problems based on using data efficiently. 

 

Literature Review 

The table 1 shows what recent studies (2024–2025) have researched about IDS that rely on 

advanced machine learning techniques and optimization on CICIDS benchmark datasets. 

Such works concentrate on better detection accuracy, choosing the right features, and helping 

analyze packets almost instantly. Most research studies use AI methods like bio-inspired and 

deep learning, yet they often handle the data outside of real-life conditions. The summary 

provided in the table allows for spotting similarities in methodology, slow areas, and 

problems universities have, this foundation was key in building RTNFE. 
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Table 1. Comprehensive Analysis of Literature Review 

Author(s) & Year 

Algorithm / 

Technique 

Used 

Performance 

Metrics 

Core 

Contribution / 

Findings 

Najafi Mohsenabad & 

Tut (2024) [10] 

Bio-Inspired 

Feature 

Selection: ACO, 

ABC, FPA + 

ML Classifiers 

ACO: 99.0% 

Accuracy 

Proposed 

optimized IDS 

with minimum 

features; ACO 

proved most 

effective; reduced 

model building 

time with FPA. 

FPA: 98.7% 

Accuracy, 1s build 

time 

ABC: 98.6% 

Accuracy 

Selvam&Velliangiri 

(2024) [11] 

CNN + Deep 

Autoencoder 

(AE) + RF 

Precision: 99.5% Demonstrated 

superior deep 

learning-based 

intrusion detection 

on 

CICIDS2017/2018; 

efficient 

timestamp-based 

filtering. 

Recall: 99.5% 

F1-score: 99.5% 

Gopalsamy (2024) 

[12] 

MLP-

Backpropagation 

(MLP-BP) 

Accuracy: 98.97% Evaluated MLP-

BP on normalized 

and cleaned 

CICIDS2018; 

showed balance in 

detection metrics. 

Precision: 99% 

Recall: 98% 

F1-score: 99.38% 

Ibrahimi et al. (2024) 

[13] 

Decision Tree, 

Random Forest, 

Naïve Bayes, 

Gradient Boost 

Accuracy (varied 

by model): 96%–

99% 

Compared 

supervised ML 

classifiers for both 

binary and 

multiclass IDS 

tasks; suitable for 

IoT threat 

adaptation. 

Chimphlee&Chimphlee 

(2024) [14] 

Hyperparameter-

Optimized 

XGBoost (HO-

XGB) 

Accuracy: >99% 

(with tuned 

params) 

Demonstrated that 

HO-XGB 

outperforms 

conventional 

methods by fine-

tuning 10+ 

hyperparameters. 
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Onishchenko et al. 

(2024) [15] 

Associative Rule 

Mining + 

Intelligent Data 

Analysis (IDA) 

Qualitative 

Evaluation; no 

exact metric 

Proposed 

automated rule 

generation for 

cyber incident 

detection in SIEM 

using 

CICIDS2018; 

tackled 

dimensionality and 

rule sequencing. 

Kumar & Pandey 

(2024) [16] 

Comparative 

Survey: ANN, 

RF, CNN, 

Apache Spark 

RF: 99.98% 

Accuracy 

Provided empirical 

performance 

comparison 

showing 

CICIDS2018 

superiority over 

CICIDS2017 in 

IDS development. 

ANN: 99.97% 

Accuracy 

Khan et al. (2024) [17] 

Literature Study 

on Anomaly 

Detection Using 

ML 

Not applicable 

Highlighted the 

insufficiency of 

CICIDS2017 and 

recommended 

dynamic datasets 

like CICIDS2018 

for ML 

generalization. 

Dube (2024) [18] 
Dataset Integrity 

Evaluation 
Not applicable 

Criticized use of 

summarized 

CICIDS2017 data; 

advocated for 

using raw 

CICIDS2018 to 

avoid model 

overfitting. 

The main focus of most current intrusion detection frameworks is to reach a high rate of 

accuracy by working with static data and doing batch processing. Although Artificial Bee 

Colony (ABC) [19], Ant Colony Optimization (ACO), Deep Autoencoders (AE), CNNs, and 

XGBoost have given promising outcomes, they are mostly judged with offline methods. The 

result is that they cannot be applied effectively in fast and urgent networks. Besides, most of 

the time, these approaches use features extracted in advance, so they cannot handle threats 

that change swiftly. 

High efficiency is lacking when it comes to real-time packet analysis, dynamic collection of 

data flows, and fast processing of feature data at the same time. There is not much attention 

paid to making architectures that can be easily used with streaming technologies such as 

Kafka. A lot of designs ignore factors such as latency and throughput, choosing to measure 

security solutions only by their accuracy—but accuracy is not important in actual SOC 

operations or IoT-based infrastructure. 

RTNFE fixes these limitations with the combination of Scapy for capture, PyShark for 

parsing, and Kafka for handling asynchronous data streams. With parallel sliding-windows, 
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data is both grouped and extraction occurs in real time, changing the raw traffic into 

organized formats similar to NetFlow. PCAP replay on RTNFE works with CICIDS 2018 

data, which allows investigators to move between controlled testing and using the system in 

real life. As a result, IDS research changes from looking at events that have already occurred 

to spotting them as they happen. 

Proposed Methodology 

To use the proposed RTNFE, line capture of packets, their processing, and detection of 

intrusions is being done by using deep learning. Via PyShark, all the packets are stored and 

the Scapy, then investigates them to identify details including timestamp, IPs, ports, protocol, 

number of packets or bytes, and the time taken during the flow. A rolling window of data is 

used so that these features can be calculated in real time with no errors. At the second stage, 

data is sent over Kafka from the first stage so that the second-stage system can take it in for 

analysis as required. At this point, tcpreplay is used to run the CICIDS 2018 traffic and assess 

the framework’s behavior with both normal and malignant traffic, the latency it incurs, 

supported data rate, and packet delivery effectiveness. The next stage of the process includes 

a CNN with BiLSTM layer and normalizes the flow vectors using a better mathematical 

approach. CNN deals with immediate surrounding places, while BiLSTM processes 

relationships that exist over longer time periods. At last, a Softmax classifier helps determine 

if a flow is dangerous or not. Balance weighting for each class is applied to the loss function 

to tackle problems of class imbalance. With this setup, discovering cyber-attacks happens 

promptly, effectively, and it is flexible to use in security systems nowadays. 

Packet Capture & Flow-Level Feature Extraction 

Packet Capture & Flow-Level Feature Extraction is the main step in the RTNFE framework 

that gathers raw network packets and changes them into flow-level data in real time. First, 

PyShark is used to access TShark, so one does not have to parse captures manually when 

doing packet analysis with Python. At the same time, Scapy is utilized to parse every packet, 

acquiring useful information from its Ethernet, IP, TCP/UDP, and application header fields. 

All these packets have the timestamp, the IP addresses, the port numbers, the protocol, the 

size, and direction of the packet extracted during the parsing. 

Packets are grouped in a set interval by a sliding window technique, and the grouping is 

based on the combination of their 5-tuple (source and destination IP addresses, source and 

destination ports, and protocol) and how far apart they are in the packet sequence. 

Flow_Duration, Total_Bytes, Packet_Count, Avg_Packet_Size, and 

Inter_Packet_Arrival_Time are the metrics that describe every flow. These flow records are 

saved in buffers and they are timed out so that buffer overflow does not occur. 

Also, the logic for extracting information is designed so that packets from each interface may 

be caught by separate threads, which maximizes throughput and makes sure only a small 

number of packets are lost at high speeds. It is necessary to perform packet-to-flow 

conversion to provide high-speed analytics and make sure that fast detection works in 

environments with high packet volumes. These feature vectors are used to show the results 

live and classify intrusions with a deep learning analysis after extraction. 

Kafka-Based Streaming & Buffering  

Kafka-Based Streaming & Buffering in the RealTime-NetFlowExtractor (RTNFE) framework 

enables low-latency, fault-tolerant transmission of flow-level features from the capture 

module to downstream components such as classification and storage. Apache Kafka is used 

as a distributed publish-subscribe messaging system, facilitating scalable data streaming in 

real time. Each processed flow Fi is structured as a JSON object containing: 

Fi

={src_ip,dst_ip,src_port,dst_port,protocol,flow_duration,pkt_count,byte_count,avg_pkt_size,

iat_mean}  
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This tuple is serialized and sent by a Kafka producer to a designated topic Tc, representing 

class c∈{benign,malicious}. 

Let the message production rate is given in Equation 1. 

λp =
𝑁𝑓
∆𝑡

 

where Nf is the number of flows generated in time window Δt. This must satisfy the Kafka 

broker throughput capacity λb to avoid queuing delay is given in Equation 2. 

λp ≤ λb 

Kafka brokers maintain an in-memory buffer and persist messages with replication factor R, 

ensuring fault tolerance. Let the partition buffer size be B bytes. Given average message size 

m, the buffering capacity in number of messages is given in Equation 3. 

𝑀𝑏𝑢𝑓 = ⌊
𝐵

𝑚
⌋ 

To avoid buffer overflow, the producer sends rate λp and consumer poll rate λc must satisfy 

the condition in Equation 4. 

λc ≥ λp 

Kafka’s internal queueing follows log-structured storage, with message offset oi tracked per 

partition Pk such that in Equation 5. 

𝑜𝑖 = 𝑜0 + 𝑖for each message i in partition Pk 

A Kafka consumer polls each partition to collect a batch of b messages at interval τ, forming 

a batch buffer B={F1,F2,...,Fb}. This buffer is passed to the deep learning classifier. The 

buffering delay δb is given in Equation 6. 

δb = τ + ϵ 
where ϵ is the decoding and parsing time. 

Kafka ensures at-least-once delivery by tracking committed offsets. The end-to-end latency 

Le2e is given in Equation 7. 

𝐿𝑒2𝑒 = δcapture + δproduce + δbroker + δconsume 

 

Where each term denotes delay due to packet capture, message serialization, broker queuing, 

and consumer polling, respectively. This streaming and buffering design allows RTNFE to 

achieve near-real-time delivery of flow vectors from raw packet capture to analysis, 

decoupling data ingestion from classification, and ensuring resilience in high-throughput 

environments. 

Replay-Driven Evaluation with CICIDS2018  

The CICIDS2018 dataset comprises real-world traffic traces labeled across various categories 

(e.g., DDoS, brute force, port scan, botnet), and includes both benign and malicious packets. 

To simulate a live network environment, packet replay is performed using the tcpreplay 

utility is given in Equation 8. 

tcpreplay → Packet Stream P = {p1, p2, . . . , pn} 
Each packet pi is replayed at its original timestamp interval or user-defined speed, preserving 

temporal characteristics. 

As packets are replayed, the RTNFE framework captures them via Scapy or PyShark, 

performs real-time parsing, and aggregates them into flows using a parallel-sized sliding 

window mechanism. For a given window size ω, the flowFt at time t is defined in Equation 9. 

𝐹𝑡 = ⋃ 𝑝𝑖

𝑛

𝑖=1
𝑇(𝑝𝑖)𝜖[𝑡,𝑡+𝑤]

 

Here, T(pi) is the timestamp of packet pi. This captures flow-level statistics (e.g., packet 

count, byte count, inter-arrival time) within the active window. 
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This replay-driven setup closely mirrors production environments by simulating packet 

streams under realistic network conditions. It allows precise calibration of sliding windows, 

Kafka buffering rates, and classification latency. It also supports comparative evaluation of 

different flow classifiers under a controlled yet dynamic traffic environment. 

The replay-driven evaluation ensures RTNFE’s robustness and adaptability to live cyber 

threats, validating the framework’s capability to extract actionable flow features and support 

downstream real-time intrusion detection. 

Mathematically modified Deep Learning-Based Flow Classification 

The deep learning-based flow classification model operates on the flow-level feature vector 

extracted from the RealTime-NetFlowExtractor (RTNFE) pipeline. Let the feature vector for 

a given flow Fi is given in Equation 10.  

𝑥𝑖 = [𝐹𝑙𝑜𝑤_𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑖, 𝑇𝑜𝑡𝑎𝑙_𝐵𝑦𝑡𝑒𝑠𝑖, 𝑃𝑎𝑐𝑘𝑒𝑡_𝐶𝑜𝑢𝑛𝑡𝑖, 𝐴𝑣𝑔_𝑃𝑘𝑡_𝑆𝑖𝑧𝑒𝑖, 𝐼𝐴𝑇_𝑀𝑒𝑎𝑛𝑖, … ]
∈ 𝑅𝑑 

where d is the feature dimension. To improve model convergence and stability, each feature 

is normalized by subtracting its mean μj and dividing by its standard deviation σj calculated 

over the training set, yielding normalized input is given in Equation 11. 

𝑥𝑖𝑗̃ =
𝑥𝑖,𝑗 − μ

j

𝜎𝑗
 

The normalized vector 𝑥𝑖̃is fed into the first layer of the neural network. Each feedforward 

layer computes an output vector by applying a linear transformation followed by a nonlinear 

activation function f(⋅), typically ReLU is given in Equation 11. 

ℎ
(𝑙) = 𝑓(𝑊(𝑙)ℎ

(𝑙−1) + 𝑏(𝑙)) 

where 𝑊(𝑙) and 𝑏(𝑙) are the learnable weights and biases of layer l, andℎ
(0)

=𝑥𝑖̃. 
To enhance the model’s focus on discriminative flow features, an attention mechanism 

modulates the activation of each neuron. This modulation is formulated as element-wise 

multiplication of the layer output with a learned attention vector 𝑎(𝑙) is given in Equation 12. 

ℎ
(𝑙) = 𝑓(𝑊(𝑙)ℎ

(𝑙−1) + 𝑏(𝑙)) ⊙ 𝑎(𝑙) 

where𝑎(𝑙) is computed by applying a sigmoid activation σ(⋅)to a linear transformation of the 

previous layer’s output is given in Equation 13. 

𝑎(𝑙) = 𝜎(𝑊𝑎
(𝑙)
ℎ
(𝑙−1) + 𝑏𝑎

(𝑙)
) 

This mechanism allows the network to dynamically weight each neuron’s contribution based 

on learned importance. 

At the output layer, the network produces logits z for each class via Equation 14. 

𝑧 = 𝑊(𝐿)ℎ
(𝐿−1) + 𝑏(𝐿) 

which are then converted to class probabilities through the softmax function is given in 

Equation 15. 

𝑦̂𝑐 =
exp⁡(𝑧𝑐)

∑ exp⁡(𝑧𝑘)
𝐶
𝑘=1

 

where C is the number of classes. 

The model training objective is to minimize the cross-entropy loss over all N training flows 

are given Equation 16. 

L = −
1

𝑁
∑∑𝑦𝑖,𝑐

𝐶

𝑐=1

𝑙𝑜𝑔

𝑁

𝑖=1

𝑦̂𝑖,𝑐 

whereyi,c is the one-hot encoded ground truth for flow i.  

To mitigate overfitting, an L2 regularization term is added on the network weights are given 

Equation 18. 
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Lreg = λ∑||𝑊(𝑙)||𝐹
2

𝐿

𝑙=1

 

and the total loss becomes (estimated by Equation 19) 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿 + 𝐿𝑟𝑒𝑔 

where λ controls the regularization strength. 

Parameter optimization is performed via the Adam algorithm, which updates each parameter 

θ at iteration t using bias-corrected first and second moment estimates of gradients as in 

Equation 20. 

θt = θt−1 − η
𝑚𝑡̂

√𝑣𝑡 + 𝜖
 

with learning rate η and a small constant ϵ for numerical stability. 

During inference, the predicted class label ci for flow Fi is obtained by Equation 21. 

𝑐𝑖̂ = argmax
𝑐

𝑦𝑖̂ , 𝑐 

This mathematically modified deep learning approach, incorporating attention mechanisms 

and rigorous normalization, enhances classification accuracy by emphasizing critical flow 

attributes and improving gradient flow during training, making it suitable for real-time 

network intrusion detection applications. The procedure is given in Algorithm 1. 

Algorithm 1. Proposed RealTime-NetFlowExtractor (RTNFE) 

Input: 

    Live Network Interface I 

    Pre-recorded Traffic Trace T (from CICIDS2018) 

    Kafka Topic Tc 

    Deep Learning Classifier DLModel 

 

Output: 

    Predicted Labels for Each Flow {benign, malicious} 

 

Stage 1: Packet Capture & Flow-Level Feature Extraction 

1:  Initialize PyShark and Scapy on Interface I 

2:  while True do 

3:      pkt ← capture_packet(I) 

4:      Extract header fields: timestamp, src_ip, dst_ip, src_port, dst_port, protocol, length 

5:      Group packets into flows based on 5-tuple and sliding window 

6:      For each flow Fi, compute features:  

           {Flow_Duration, Total_Bytes, Packet_Count, Avg_Pkt_Size, IAT_Mean} 

7:      Store Fi as JSON tuple 

 

Stage 2: Kafka-Based Streaming & Buffering 

8:  Monitor the number of flows generated over a time window 

9:  Ensure message production rate is within Kafka broker capacity 

10: Calculate buffer size and ensure no overflow 

11: Ensure consumer poll rate matches or exceeds production rate 

12: for each Fi do 

13:     Produce Fi to Kafka Topic Tc 

14:     Track message offset 

15:     Batch messages periodically into buffer 

16:     Compute buffering delay 

17:     Measure end-to-end latency for flow delivery 
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Stage 3: Replay-Driven Evaluation 

18: Replay traffic trace T using tcpreplay 

19: for each pi in replayed trace do 

20:     Wait for original timestamp interval 

21:     Process packets using Stages 1 and 2 to form flows 

 

Stage 4: Deep Learning-Based Flow Classification 

22: for each flow Fi in buffer do 

23:     Construct feature vector x_i from flow attributes 

24:     Normalize feature vector 

25:     Pass x_i to the first neural network layer 

26:     for each hidden layer l do 

27:         Compute linear transformation and apply ReLU activation 

28:         Compute attention vector 

29:         Apply attention modulation to activations 

30:     end for 

31:     Compute output logits 

32:     Apply softmax to obtain class probabilities 

33:     Assign class label with highest probability 

 

Training Phase: 

34:     Compute cross-entropy loss over training set 

35:     Add L2 regularization to loss 

36:     Combine losses to obtain total loss 

37:     Optimize model parameters using Adam optimizer 

 

Return: Final predicted class label for each flow 

 

Experimental Analysis 

The simulation includes using tcpreplay to replay the CICIDS 2018 PCAP files on high-

speed network interfaces so they appear in real time. On a multi-core system running Ubuntu 

22.04 and with 10 Gbps NIC and 64 GB RAM, RTNFE uses Scapy to get live packets and 

PyShark for parsing before streaming them through the Kafka platform. As a result, I can 

accurately measure live traffic capture, flow creation, and features that are relevant to my 

work. CICIDS 2018 makes it possible to gauge the performance of models for detecting 

intrusions and examining network traffic. There are labeled flows included from actual 

attacks and benign situations. This collection of data helps with real-time network analytics 

by giving high-quality PCAPs and flow-level features. This is explained in Table 2. 

Table 2. Dataset Description 

Attribute Details 

Name CICIDS 2018 (Canadian Institute for Cybersecurity IDS 2018) 

Collected By 
Canadian Institute for Cybersecurity (CIC), University of New 

Brunswick 

Collection Duration 10 Days (Monday to Friday sessions) 

Traffic Type Benign + Multiple Attack Scenarios 

Protocols Covered TCP, UDP, ICMP, HTTP, HTTPS, FTP, SSH 

Data Format PCAP (raw), CSV (flow features) 

File Size ~80 GB of PCAP files 
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Number of Features 80 flow-level features 

Tools Used for Generation LOIC, Hping3, Metasploit, Selenium, tcpreplay 

Benign Activities Web browsing, Email, Streaming, VoIP, File Transfer 

Attack Categories 
DoS, DDoS, Brute-Force, Botnet, Web Attacks, Infiltration, 

Byzantine 

Label Type Binary (Benign/Malicious) + Multi-class (Attack Type Specific) 

Replay Tool Used tcpreplay (for real-time emulation) 

Use Case Suitability 
Real-Time IDS, ML-based Classification, Flow Analytics, 

Anomaly Detection 

Open Access Yes (Downloadable from CIC official site) 

Realism Level High – Enterprise simulation with real traffic profiles 

Ground Truth Availability Yes – Each record labeled with attack type or benign 

Common Use in Research 
Real-time threat detection, flow-based classification, hybrid 

learning models 

Performance was checked by collecting fresh data in real time and by running the CICIDS 

2018 dataset into TCPReplay. Access to the results in live situations required looking at three 

significant indicators: PPT, FEL, and PFCR. How many packets a system can deal with under 

high volume of traffic is shown by the Packet Processing Throughput, while also reflecting 

the system’s flexibility. More than 100,000 packets were processed every second by the 

network framework with effective use of multiple threads. Features are extracted in a certain 

latency; RTNFE had a short latency of about 5.2 milliseconds since it captured and parsed 

data at the same moment. Packet-to-Flow Completeness Ratio indicates how close the actual 

flow counts are to the expected number and reveals how accurate recording over time is; 

RTNFE provides a PFCR of 96.4%, so it keeps the data accuracy consistent. It has been 

shown that RTNFE can be depended on, offering good performance, especially for network 

oversight, spotting unusual developments, and stopping cyberattacks. The comparison of 

their performance is shown in Table 3. 

Table 3. Comparison of Performance 

Technique / Model 
Accuracy 

(%) 
Precision (%) 

Recall 

(%) 

F1-

Score 

(%) 

RTNFE (Proposed) 
98.93 99.1 98.7 98.89 

(Python + Scapy + Kafka + PyShark) 

Hyperparameter-Optimized 

XGBoost (HO-XGB) 99.2 99.3 99 99.15 

Chimphlee&Chimphlee, 2024 

MLP Backpropagation (MLP-BP) 
98.97 99 98 99.38 

Gopalsamy, 2024 

Random Forest + Deep 

Autoencoder (RF + AE) 99.5 99.5 99.5 99.5 

Selvam&Velliangiri, 2024 

Ant Colony Optimization + 

Classifier (ACO) 99 98.9 98.8 98.85 

Najafi Mohsenabad & Tut, 2024 
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Figure 1. Comparison of Performance 

 

It is very clear how well the RTNFE framework functions across the board, achieving an 

accuracy of 98.93%, a precision of 99.1%, recall of 98.7%, and an F1-score of 98.89%. They 

are similar or better to the popular techniques such as HO-XGB, MLP-BP, RF+AE, and 

ACO. Since this framework offers instant packet usage, fast feature identification, and quick 

analysis for streaming data, it works differently from the commonly used batch intrusion 

detection techniques. As RTNFE combines Scapy, PyShark, and Kafka, packets are turned 

into flows and at the same time, it keeps the buffering very low and the data flowing 

smoothly. Thanks to its speed and powerful accuracy, it is best for data centers that show 

rapid activity, main trading floors, and IoT networks, as excellent responses are fundamental 

in such cases. 

Network flow estimation in real time is helpful for people in security operation centers as 

well as administrators. Using Intrusion Detection Systems, packets are examined to identify 

threats as soon as possible and apply the required response. Besides, since it can work with 

SIEM pipelines, it fits in all types of setups, including those used for web-hosting. 

Still, there are some issues with the system. Even though it works well, the real-time model 

depends heavily on your computer’s hardware when there is a lot of usage. Multi-gigabit 

systems could run into trouble if not enough attention is given to writing parallel code. 

Besides, although RTNFE manages session streams by aggregating them, it does not include 

more advanced approaches to join session details and find linked or sequenced attacks. Other 

experiments should be done to link deep packet inspection (DPI) with anomaly detection so 

that network abnormalities can be easily identified and stopped. 

 

Conclusion 

This framework called RTNFE can serve the needs of analysis and extraction of flow-level 

details for a wide range of traffic data. RTNFE can detect intrusions as soon as they happen 

and group events together in no time, thanks to Python, Scapy, PyShark, and Kafka. A tool 

that can deliver timestamp, IP address, port, protocol, packet or byte counts in addition to 

flow duration at any time is helpful in cybersecurity now. Testing the CICIDS 2018 dataset 

proves that this model is superior when it comes to accuracy (98.93%), precision (99.1%), 

recall (98.7%), and F1-score (98.89%) when compared to existing models. Thanks to 

RTNFE, the architecture can easily fit in the modern and fast-changing infrastructure we have 
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today. Consequently, RTNFE acts as a good base for future systems and plays an important 

role in applying threat intelligence at the moment. 

In the near future, firewalls will use deep learning for finding unusual activities, detailed 

packet analysis, and adaptive ways to track traffic. That’s why RTNFE will learn to catch 

different cyber threats by becoming more vigilant in big, fast-moving networks. 
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