
LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT 
ISSN:1581-5374 E-ISSN:1855-363X  
VOL. 23, NO. S5(2025) 

 

992 
 

MODELLING OF TECHNOLOGICAL PROCESSES FOR COPPER ROD 

PRODUCTION 

 

Saule Kazhikenova1*,Gulnazira Shaikhova2, Sagyndyk Shaltakov3 
 

1The Higher Mathematics Department,Abylkas Saginov Karaganda Technical 

University,Karaganda,Kazakhstan 
2The Higher Mathematics Department, Abylkas Saginov Karaganda Technical University, Karaganda, 

Kazakhstan 
3The Physics Department, Abylkas Saginov Karaganda Technical University, Karaganda, Kazakhstan 

 
1sauleshka555@mail.ru; 

2shaikxova_2011@mail.ru 
3sagyndyk613@mail.ru 

*CorrespondingAuthor:sauleshka555@mail.ru 

 

Abstract 

Purpose 

The main purpose of this study is to develop an information model of technological processes for monitoring 

and optimizing production tasks. 

Design/methodology/approach 

Mathematical modelling of melt flow processes in technological equipment is based on the Navier-Stokes 

equations. The Galerkin method was used to solve the hydrodynamic equations with appropriate boundary 

conditions and obtain a priori estimates. 

Findings 

A physical and mathematical model of molten metal motion in process equipment has been developed. A 

computer program for the numerical solution of hydrodynamic equations has been developed. An information 

model for monitoring and optimizing of technological processes in process equipment has been developed based 

on numerical experiments. 

Practical application 

The developed information model has been verified and was constructed for Zhezkazgantsvetmet Production 

Association Branch of Kazakhmys Corporation LLP continuous rolling lines for copper rods. The empirical and 

numerical calculations show that the best melting occurred at 1556 [K].  

Originality/Value 

This study fulfils the need for addresses the problem of copper sticking to the chute during the hot rolling 

process by investigating the key technologies intended to improve the production line process of copper rods. 

The application of the developed melt processing method has a positive effect on the product quality. 

 

Keywords—copper rod, hydrodynamics, modelling, numerical solution. 

 

I. INTRODUCTION 

The physical and mathematical model the hydrodynamic equations is presented, for the 

study of which special attention is paid to the study of melt viscosity, since viscosity is 

closely related to the physical parameters of the melt [1-4].  

The issue of meeting the needs of the domestic industry with high-quality products has 

necessitated the development of scientific foundations and methods for studying the 

thermophysical and structural properties of metal melts.  

Conducting metallurgical experiments is expensive and difficult. Numerical simulations 

are the simplest and most effective way to evaluate the furnace processes. Scientific research 

in these areas has made it possible to find solutions to the numerous problems associated with 

molten systems. 

In this regard, the relevance of this study is determined by the objective and urgent need to 

develop nonstationary physical and mathematical models of the structural properties of 

molten metals. Numerical solutions of the Navier-Stokes equations have been used in many 
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practical applications and scientific papers. However, in analytical form, solutions of these 

equations have been found only in some special cases; therefore, there is no complete 

understanding of the properties of the Navier-Stokes equations [5]. 

In particular, solutions to the Navier-Stokes equations often include turbulence, which 

remains one of the most important unsolved problems in physics despite its enormous 

importance in science and technology [6-9]. 

«Simulation of incompressible flow inside a cubic lid driven cavity for a range of Reynolds 

number is carried out using dynamic Smagorinsky model (DSM). The centerline average 

velocity profiles were compared with existing experimental and numerical results» [10]. The 

Kolmogorov length scale and Taylor microscale were calculated, and it was found that both 

decreased towards the wall as dissipation was high at the walls. 

The application of direct numerical simulations and fully three-dimensional linear stability 

analyses is investigated, «increasing the Reynolds number triggers self-sustained periodic 

oscillations of the flow in the vicinity of the spanwise end walls of the cavity» [11]. 

Mathematical models of microstructure were established based on the cellular automaton-

finite difference (CA-FD). The simulated and experimental results were compared in this 

study, and they agreed well [12]. 

Mathematical models that reduce the equation to a system of two ordinary differential 

equations were defined. It was shown that the constructing exact solutions reduces the 

integration of a system of linear equations with arbitrary predefined functions [13]. 

Several strategies have been proposed to improve nonlinear systems [14–27]. The theory of 

the Navier-Stokes equations is very rich in its content, and its development poses new 

mathematical problems related not only to applications in hydrodynamics but also in areas of 

fundamental mathematics such as the theory of embedding of functional spaces, potential 

theory, and interpolation theory.  

The variational multiscale framework for the finite element approximation of the 

compressible Navier-Stokes equations written in the conservation form is given [22]. 

Among the calculated volumes of fluid flow, one can distinguish closed volumes of fluid 

flow that do not exchange flow with neighboring volumes, that is closed systems. These 

systems are limited by impermeable walls or surfaces under known pressure, free surfaces or 

generating surfaces through which the flow passes with a known velocity. The systems 

described by the Navier-Stokes equations with certain boundary conditions (pressures or 

velocities) at all boundaries were closed. The solution to the Navier-Stokes equations can 

always be obtained from the modified Navier-Stokes equations. Therefore, for closed systems, 

a global solution to the Navier-Stokes equations always exists. This study solves the solution 

to the Navier-Stokes equations by applying a small parameter to modify it, approximating the 

equations using a small parameter, and applying Galerkin's method to construct approximate 

solutions. 

II. METHODS AND MATERIALS 

The primary aim of the numerical analyses was to determine the effect of velocity on the 

melt viscosity. In order to gain these information, analytical approximation for equations 

were carried out using a small parameter using with 3 different stages. The first obtaining a 

priori estimates (further referred to as Version A), the second one is denoted as using 

Galerkin's method (further referred to as Version B), while the last one is denoted as 

transferring the limit (further referred to as Version C). 

Let us consider the following system of nonlinear stationary equations representing a 

mathematical model of the motion of an incompressible melt in limited area 3Q R with 

smooth border Q   : 
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2 1
( ) ( ) ( ) ,

( ) ,

0,

p div g

div

             


   



   
                

  


  
 




                   (1)     

with boundary conditions: 

0

 ,    x 

 ,                                                                                                            

(2) 

   1 2 3, ,x x x x   is the velocity;    1 2 3, ,x x x x   is the density;    1 2 3, ,p x p x x x  is the 

pressure;    1 2 3, ,g x g x x x is the mass, and ,   are the diffusion and viscosity coefficients:  

0, 0.    

If the velocity has a component normal to the wall, the wall receives energy from the liquid 

and completely returns to the liquid completely (changing the direction of the velocity). The 

tangential component of the velocity was zero (adhesion effect). Therefore, these walls did 

not change the energy of the system. However, the energy reflected from the walls creates an 

internal energy flow that circulates between walls. Thus, in this case, all of the above 

formulas remain unchanged, but the conditions on the walls (impermeability and adhesion) 

should not be formulated explicitly; they appear as a result of solving the problem during 

integration in the region limited by the walls. To implement this method, it is sufficient to 

describe the boundaries of the closed region in which the solution is considered. There is also 

no need to supplement these equations with boundary conditions because the boundaries can 

be walls or free surfaces. This proof was based on the fact that the fluid did not change. The 

solvability of problems (1) and (2) was investigated in [6].  

This paper proposes analytical approximation for function using a small parameter that 

combines two forms of boundary value problems for hydrodynamic equations. The 

computation of an approximate value function from numerical model is shown to be 

equivalent to the computation of the exact value function for a finite model derived from data. 

It is known that the system in equation (1) is not a Cauchy-Kovalevskaya system. Note that 

the Cauchy-Kovalevskaya theorem also plays an important role in the studies of 

hydrodynamic equations [7]. Estimates that guarantee the stability of the solution exist for 

solutions of the Cauchy problem as well as boundary value problems for hydrodynamic 

equations. The approximate solutions of systems (1) and (2) can be obtained by 

approximating the equation coefficients, free terms, and initial functions using a small 

parameter. The convergence of the approximate solutions to the exact solution of the Navier-

Stokes equations follows from energy estimates. 

Let us construct a system of equations (3) – (4), which is an approximation of the 

original models (1) – (2) with a small parameter )0(  : 

2 1 1
( ) ( ) ( ) ,

2

( ) ,

0

p div g div

p div

              



 

 

                 


   

 

   
                 

  


  


 



      

(3) 
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0

 ,    x 

 .                                                                                                          (4) 

The system of equations (3) is a Cauchy-Kovalevskaya type system. 

The set of functions  )(),(),( xpxx    is called a strongly generalized solution to 

problems (3) and (4) and satisfies the following conditions: 

1) )(x  
0

1

2W Q ,  2

2W Q  ,  0 ;b x B     

2)  x   
0

1

2W Q  integral equal:  

    

  2

1
( ) , ( )

2

1
( ) 0,

Q

div

div p div g dx

         

       



              

              


          

  
             

  


 

3) Equations (3) and (4) are fulfilled almost everywhere in Q as appropriate. 
nR is a Euclidean space;  2L Q is a Hilbert space;  pL Q , 1 6p    is a Banach 

space;  1

2W Q is a space consisting of  2L Q elements, having squarely summable overQ 

generalized first order derivatives;  2

2W Q  is a space consisting of elements  2L Q , 

having squarely summable overQgeneralized derivatives of the first and second orders; 

space  
0

1

2W Q is subspace  1

2W Q , and is the closure of an infinitely differentiable finite 

vector function set [5-7].  

The system of equations (3) is a Cauchy-Kovalevskaya system.  

A. Assertion1.  

Let the functions ,g  and   is a sufficiently small number, satisfies the conditions:  

   3/2

6 2

5

,g L Q W Q  , 

2

2 2

1 2

min ,
16

B b b

C b C B B b
 

 
   

  

. 

Then there exists at least one strongly generalized solution of the equations system (3) - 

(4), where 
21,CC are constants that depends only on the problem data and do not depend on 

the   p,, functions. 

Proof. The proof of this assertion 1 consists of three stages:  

 

 
 

a) We obtain the necessary a priori estimates. Let multiply the second equation in (3) 

by )(x  the scalar in  2L Q : 

 
 

2

2

,
L Q

Q

dx                                                 (5) 

After integration in parts is applicable to the right side: 

a) obtaining a priori estimates b) using Galerkin's method c) transferring the limit
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        

   
2 21

max ,
2

Q Q Q

x x

Q

dx dx d dx
n

dx C C


          

       


          

       




              



         

   


 

the Maximum Principle to the second equation of system (3): 

 ,0 ;b b x B      

then: 

      
2

1 2 .x x x

Q

dx C C C C                        

If
2


  , then from equation (5) follows inequality (6):  

 
2 2

.
2

xC C 
                           (6)  

Let multiply equation (3) by the function  x scalar in space  2C Q . Then, an estimate 

satisfies 

   

 

2 2 2

2

1

2 2

1
.

x

Q Q Q

Q Q

dx g dx p div dx dx

dx dx

         

     




         

       




       

 
        

 

   

 

 

Or: 

    
2 2

2 2
2

( ) ( )

2

1

1
.

x C Q C Q
Q

Q

div div dx

g dx

      

    



          


     


       

    
       

    





 

We obtain a priori estimates of the integral terms in the same manner as in [6] 

 6

5

2 2
2 2

1

2

1

.
2

x x x xL Q

x

div B C g
b b

B b

      



 
       



 

        




 

Let  ,
2 2

B b B
 


   and an inequality implies .

2

B b



  

We use repeatedly Jung's inequality, then: 

 

   
6

5

2
2 2 2 2 24

12

2 2

1

1

2

, , , .
4

x x x

x L

B
div C

b

C b B C g

 
        




   

     

  

              (7) 

Choose
3

1,
8


    and, taking into account (7):                        

 
6

5

2
2 2 2 2 22

2 12

1
.

2
x x x x L

B
div C C C g C

b

 
        


        

The following inequality are held: 
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232





      and     

2

2 2

1 2

,
16

b

C b C B


  


 

6

5

2 2 2

1 .
32

x L

C
div C g C 

  


    

The result is a fair assessment (8) for  smallness (9):  

 Cdivx

22 1  


                           (8) 

2

2 2

1 2

min ,
16

B b b

C b C B B b
 

 
   

  

.               (9) 

From the embedding theorems and from (7), considering (8) it follows that (10) and 

(11):  

  ,1 6.pL Q p                                          (10) 

.
2

 C          (11) 

We obtain equation (12) based on equation (6), and then evaluate similarly in the 

negative norm 
p and obtain inequality (13). 

 ,1 6.pL Q p            (12) 

.  pCp                                    (13) 

b) We proceed to the second stage,Galerkin's method [21] – [26], to construct 

approximate solutions. 

Let be i  is basis in space  2L Q for system (14): 

0

0.

i i i i

i i

i

p

p div

   

 

 

   


 




          (14) 

The approximate solutions
  ,,, ,, NNN P  are presented in the form of (15), (16), 

and (17). Density and pressure are classic solutions to problems (16) and (17), respectively.  

,

1

.
N

N N

i i

i

  


                                   (15) 

 

 

, , ,

,

N N N

N x

  



   

  

   




                      (16) 

0,,    NN divp .       (17) 

Numbers N

i are from the system of equations (18): 

      



, , , , , , , ,

2 , , , , ,

,

1 1
, 0.

2

N N N N N N N N

N N N N N

iN
div div

       

    



          

      


        

  
      

  

        (18)         

Ni ,1 . 

c) Further, by analogy with[5-7], [15-17] using Brauer's lemma, we prove the existence 

of a solution to problems (15) – (17) and show that for approximate solutions   ,,, ,, NNN p ,  

a priori estimates are fair for approximate solutions (6), (8), (10) – (13). Then, from the 

sequences }{},{},{ ,,,   NNN p , can identify the subsequences for which it is true. 
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  ,N  and 
 

11
,


N

weaklyin the  L Q

  ,N weaklyin the  2

2W Q ,

  ,N
weaklyin the  1

2W Q ,  pp N , weaklyin the  2L Q ,   ,N and 

  ,N
  strongly in the  pL Q . 

Let us to limit the 0 of the selected sequences in integral identity corresponding to 

the integral identity in Definition 1 and in (16) – (17).  We conclude that the limit functions  
  p,,  is a strongly generalized solution to problems (3) and (4). 

Assertion 1 is proved. 

B. Assertion 2. 

Let all conditions of Proposition 1 are satisfied. Then the strongly generalized solution of 

system equation (3) - (4) at 0  converges to the strongly generalized solution of 

original model (1) - (2). 

Proof. The obtained uniform prior estimates establish the convergence of the functions 
  p,, : 

 

11
  and    weaklyin the  L Q

,    weaklyin the  2

2W Q ,   

weaklyin the  1

2W Q ,     and     strongly in the  pL Q , 0p  strongly in the 

 2L Q . 

Let us consider the limit of 0  for the corresponding integral identities.  We 

conclude that the limit functions   ,, p  are strongly generalized solutions to the original 

model systems (1) and (2). 

Assertion 2 is proved. 

III. RESULTS AND DISCUSSION 

The main task faced by modern metallurgists is to obtain high-quality products with ever-

increasing demand from machine builders while minimizing the costs of their production. 

One of the most effective ways to solve these problems is through the comprehensive 

development of production process technologies [28-34].  

Author «propose a new method for calculation of hydraulic resistance of channels with 

constant cross-section. This method is based on the estimates obtained for the average energy 

dissipation rate in a turbulent flow.  The proposed method allows for the calculation of the 

hydraulic resistance of various channels with sufficiently high accuracy and is based only on 

information about the channel geometry» [35]. 

Modern achievements in this area have made it possible to master the production of copper 

rods of high quality at Zhezkazgantsvetmet Production Association, which is part of the 

business perimeter of «Kazakhmys Corporation» LLP. Section III presents the results of the 

empirical and numerical simulation of metal melt motion under changing physical 

characteristics of the melt and the design features of industrial equipment at the 

Zhezkazgantsvetmet Production Association. 

Currently, empirical and numerical modelling methods are widely used to solve a number 

of complex scientific and technical problems. This is because the solution to many problems, 

including metallurgical problems, in full-scale conditions for a number of reasons (opacity 

and high temperature of metal, cumbersome and expensive installation, and aggressive 

properties of molten metal) is quite difficult. 

The modelling of momentum transfer processes requires geometric, kinematic, and 

dynamic similarities [36-42]. This implies that the model and nature should be similar, the 
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dimensionless velocity fields in the considered flows should be the same, and the differential 

equations of motion and boundary conditions should be similar. Copper and its alloys are 

important non-ferrous metals that are widely used in many environments and industries [37], 

[43-52]. 

The metal melt moved along the inclined chute of the metallurgical equipment. The 

physical and mathematical model of this technological process is built under the assumption 

that the length of the trough is infinite, and the metal melt moves along the axis of the trough 

in such a way that of the three components  of velocity only one component  remains. As a 

result, we obtained a model with isothermal motion of the melt in which the density  

andviscosity  are constant. In the process of copper alloy hot continuous rolling, the problem 

of copper sticking to the chute significantly affects the quality of copper products. This study 

aims to address the problem of copper sticking to the chute during the hot rolling process by 

investigating the key technologies intended to improve the production line process of copper 

rods. 

Let us consider the physical and mathematical model incompressible melt motion in the 

absence of electromagnetic fields but in the presence of mass gravity. The numerical model 

of melt motion is described by the Navier-Stokes equation 

2 2 2

2 2 2

1
0,

1
0,

1
,

0.

p

x

p

y

p

z z x y z

z





   
 






 




 


                 



 

         (19)                   

The velocity function  depends only on the variable ,x y whereas, the pressure 

function depends on the z coordinates. The change in pressure from section to section was 

negligible and maintained the same value in a given section. Such motions are called steady-

state motions. The right side of (20) depends on the ,x y  coordinates, whereas the right side 

depends on the z  coordinates. 
2 2

2 2
.

dp

dz x y

 

  

  
  

         (20) 

The main statements of hydrodynamics: 

,
dp p

dz


   

 is the chute length. When the melt moves along the inclined chute of metallurgical 

equipment, there is a free surface of the metal melt; therefore, the pressure will be equal to 

the atmospheric pressure. The angle of inclination of the chute to the horizontal surface is 

equal to , there is a volumetric force, the projection of which on the axis Oz is equal to 

sin .z

p
F


    We obtain equation (21). The boundary conditions for the system (19) are 

determined by the equation of adhesion of the metal melt to the walls of the bottom trough as 

well as by the absence of friction on the free surface of the melt. The depth of the melt flow is 

equal to 1,  the width of the melt flow is equal to 2.  
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Fig. 1The scheme of Zhezkazgantsvetmet Production Association SCR process 

The system of equations (21) – (22) represents the boundary conditions of this 

boundary value problem. The physical and mathematical models (21) – (22) are constructed 

for the technological equipment Zhezkazgantsvetmet Production Association.  

Fig. 1 highlights the technological scheme of the equipment, the cross-section of the 

equipment bottom chute, and level of metal melt in the bottom chute.  

Calculations were performed for the lower chute with an inclination angle of 3º. 
2 2

2 2
sin 0.

x y

 
 
  

    
  

                     (21) 

0   at 0,y  0
y





at 1,y  0

x





at 2.x                                                                 (22) 

We calculated the empirical and numerical values of the melt flow parameters for the 

SCR PROCESS copper rod line of Zhezkazgantsvetmet Production Association, which is part 

of the «Kazakhmys Corporation» LLP business perimeter:   

 
,

2

r r   
   

 is arc length,    is chord,    is segment arrow:  

   2 2 2 280[mm], 16[mm], 15 / 3 80 15 16 / 3 87,6[mm].h          

2

104 104
87,6 80 16

2 2
1675,2[mm ].

2
S

  
    

  
   

The average flow velocity of the metal melt is calculated by us according to the formula 

and is equal to m
0,43 .

s
mid

 
  

 
 We used constant time step sizes at numerical scheme in the 

calculations 0,001,t  0,022.x y    Then the second melt flow velocity 
kg

3,6
s

Q
 

  
 

is 
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determined.   The adequacy of empirical and numerical calculations proves the effectiveness 

of the physical and mathematical models and their application to the calculation of the flow 

of metallic melts at sufficiently low Reynolds numbers. 

The physical picture of the copper melt flow in the process equipment is as follows: the 

different layers of melt do not mix with each other when travelling down the trough. The melt 

represents separate layers that move towards the melt surface at different velocities. «From 

the moment atoms jump in the direction of the volumetric force, the flow is separated into a 

bottom layer and a main layer. The atoms of the bottom layer were held near the bottom 

surface by interatomic coupling forces, whereas those of the main layer moved along the 

boundary of the bottom layer under the action of the bulk force. The walls of the trough due 

to internal friction inhibit the movement of the nearest copper melt layer, and this inhibition 

is transmitted from one layer to another throughout the melt flow to the surface, where the 

flow is the fastest» [9]. The melting parameters include the melt level in the chute, melt 

temperature, shape of the chute, and angle of inclination to the horizontal. As a result, it was 

possible to achieve a velocity profile and the presence of vortices during the melt flow. Let us 

consider the motion of the copper melt considering shear and bulk viscosities.   

Verification of theoretical results with practical results for SCR PROCESS copper rod line 

of the Zhezkazgantsvetmet Production Association shows the adequacy of our mathematical 

model, its objectivity and reliability. 

Velocity isolines vary from  
m

0,64
s

 
 
 

 to 
m

0,01
s

 
 
 

. In the mathematical model of melt 

motion, the maximum velocity of melt motion is reached at the surface, which is practically 

equal to zero at the bottom of the trough. This is consistent with the boundary conditions of 

equations (19) and (20). The calculations show that the average value of the isoline velocity 

is approximately equal to the average velocity of the copper melt flow  
m

0,4 .
s


 

  
 

  Let we 

calculate the number of isolines at the specified temperatures. 
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а)                                                                                         

b) 

c)                                                                                       

d) 

e)                                                                                            

f) 

 

 

 

 

 

 

 

g)                                                                                         

k) 

 

Fig.2The copper melt velocity isolines at a)1356 [K], b)1396 [K], c)1436 [K], d)1476 [K], 

e)1516 [K], f)1556 [K], g)1596 [K], k)1636 [K] temperatures  

 

TABLE I 

THE VELOCITY PROFILES OF COPPER MELT AT 1356 [K] 

 

Y                                         X 

0.0000 5.0000 10.000 15.000 20.000 25.000 30.000 35.000 40.000 45.000 50.000 

0.0000 0.4020 0.4000 0.3960 0.3880 0.3770 0.3630 0.3460 0.3260 0.3030 0.2760 0.2470 

- 

05.00 

0.4000 0.3990 0.3940 0.3870 0.3760 0.3620 0.3450 0.3240 0.3010 0.2750 0.2460 

-10.00 0.3930 0.3940 0.3900 0.3820 0.3710 0.3570 0.3400 0.3200 0.2970 0.2700 0.2410 
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-15.00 0.3850 0.3870 0.3820 0.3740 0.3630 0.3490 0.3320 0.3120 0.2890 0.2630 0.2330 

-20.00 0.3770 0.3760 0.3710 0.3630 0.3520 0.3380 0.3210 0.3010 0.2780 0.2520 0.2220 

-25.00 0.3630 0.3620 0.3570 0.3490 0.3380 0.3240 0.3070 0.2870 0.2640 0.2380 0.2080 

-30.00 0.3460 0.3450 0.3400 0.3320 0.3210 0.3070 0.2900 0.2700 0.2470 0.2210 0.1910 

-35.00 0.3260 0.3240 0.3200 0.3120 0.3010 0.2870 0.2700 0.2500 0.2270 0.2010 0.1710 

-40.00 0.3030 0.3010 0.2970 0.2890 0.2780 0.2640 0.2470 0.2270 0.2040 0.1770 0.1480 

-45.00 0.2760 0.2750 0.2700 0.2630 0.2520 0.2380 0.2210 0.2010 0.1770 0.1510 0.1220 

-50.00 0.2470 0.2460 0.2410 0.2330 0.2220 0.2080 0.1910 0.1710 0.1480 0.1220 0.0920 

 

TABLE II 

THE VELOCITY PROFILES OF COPPER MELT AT 1396 [K] 

Y                                         X 

0.0000 5.0000 10.000 15.000 20.000 25.000 30.000 35.000 40.000 45.000 50.000 

0.0000 0.4410 0.439 0.4340 0.4250 0.4140 0.3980 0.3800 0.3580 0.3320 0.3030 0.2710 

- 5.00 0.4390 0.437 0.4320 0.4240 0.4120 0.3970 0.3780 0.3560 0.3300 0.3020 0.2690 

-10.00 0.4340 0.432 0.4270 0.4190 0.4070 0.3910 0.3730 0.3510 0.3250 0.2960 0.2640 

-15.00 0.4250 0.424 0.4190 0.4100 0.3980 0.3830 0.3640 0.3420 0.3170 0.2880 0.2560 

-20.00 0.4140 0.412 0.4070 0.3980 0.3860 0.3710 0.3520 0.3300 0.3050 0.2760 0.2440 

-25.00 0.3980 0.397 0.3910 0.3830 0.3710 0.3560 0.3370 0.3150 0.2900 0.2610 0.2290 

-30.00 0.3800 0.378 0.3730 0.3640 0.3520 0.3370 0.3190 0.2960 0.2710 0.2420 0.2100 

-35.00 0.3580 0.356 0.3510 0.3420 0.3300 0.3150 0.2960 0.2740 0.2490 0.2200 0.1880 

-40.00 0.3320 0.330 0.3250 0.3170 0.3050 0.2900 0.2710 0.2490 0.2230 0.1950 0.1620 

-45.00 0.3030 0.302 0.2960 0.2880 0.2760 0.2610 0.2420 0.2200 0.1950 0.1660 0.1340 

-50.00 0.2710 0.269 0.2640 0.2560 0.2440 0.2290 0.2100 0.1880 0.1620 0.1340 0.1010 

 

TABLE III 

THE VELOCITY PROFILES OF COPPER MELT AT 1436 [K] 

Y                                         X 

0.0000 5.0000 10.000 15.000 20.000 25.000 30.000 35.000 40.000 45.000 50.000 

0.0000 0.4810 0.4790 0.4740 0.4640 0.4510 0.4350 0.4140 0.3900 0.3620 0.3310 0.2960 

- 5.00 0.4790 0.4770 0.4720 0.4620 0.4490 0.4330 0.4120 0.3880 0.3610 0.3290 0.2940 

-10.00 0.4740 0.4720 0.4660 0.4570 0.4440 0.4270 0.4070 0.3830 0.3550 0.3240 0.2880 

-15.00 0.4640 0.4620 0.4570 0.4480 0.4350 0.4180 0.3980 0.3740 0.3460 0.3140 0.2790 

-20.00 0.4510 0.4490 0.4440 0.4350 0.4220 0.4050 0.3850 0.3610 0.3330 0.3010 0.2660 

-25.00 0.4350 0.4330 0.4270 0.4180 0.4050 0.3880 0.3680 0.3440 0.3160 0.2850 0.2490 

-30.00 0.4140 0.4120 0.4070 0.3980 0.3850 0.3680 0.3480 0.3240 0.2960 0.2640 0.2290 

-35.00 0.3900 0.3880 0.3830 0.3740 0.3610 0.3440 0.3240 0.2990 0.2720 0.2400 0.2050 

-40.00 0.3620 0.3610 0.3550 0.3460 0.3330 0.3160 0.2960 0.2720 0.2440 0.2120 0.1770 

-45.00 0.3310 0.3290 0.3240 0.3140 0.3010 0.2850 0.2640 0.2400 0.2120 0.1810 0.1460 

-50.00 0.2960 0.2940 0.2880 0.2790 0.2660 0.2490 0.2290 0.2050 0.1770 0.1460 0.1110 
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TABLE IV 

THE VELOCITY PROFILES OF COPPER MELT AT 1476 [K] 

Y                                         X 

0.0000 5.0000 10.000 15.000 20.000 25.000 30.000 35.000 40.000 45.000 50.000 

0.0000 0.5220 0.5200 0.5140 0.5040 0.4900 0.4720 0.4500 0.4240 0.3940 0.3590 0.3210 

- 5.00 0.5200 0.5180 0.5120 0.5020 0.4880 0.4700 0.4480 0.4220 0.3920 0.3570 0.3190 

-10.00 0.5140 0.5120 0.5060 0.4960 0.4820 0.4640 0.4420 0.4160 0.3860 0.3510 0.3130 

-15.00 0.5040 0.5020 0.4960 0.4860 0.4720 0.4540 0.4320 0.4060 0.3750 0.3410 0.3030 

-20.00 0.4900 0.4880 0.4820 0.4720 0.4580 0.4400 0.4180 0.3920 0.3610 0.3270 0.2890 

-25.00 0.4720 0.4700 0.4640 0.4540 0.4400 0.4220 0.4000 0.3730 0.3430 0.3090 0.2710 

-30.00 0.4500 0.4480 0.4420 0.4320 0.4180 0.4010 0.3770 0.3510 0.3210 0.2870 0.2490 

-35.00 0.4240 0.4220 0.4160 0.4060 0.3920 0.3790 0.3510 0.3250 0.2950 0.2610 0.2230 

-40.00 0.3940 0.3920 0.3860 0.3790 0.3610 0.3370 0.3210 0.2950 0.2650 0.2310 0.1920 

-45.00 0.3590 0.3570 0.3510 0.3410 0.3270 0.3090 0.2870 0.2610 0.2310 0.1960 0.1580 

-50.00 0.3210 0.3190 0.3130 0.3030 0.2890 0.2710 0.2490 0.2230 0.1920 0.1580 0.1200 

 

TABLE V 

THE VELOCITY PROFILES OF COPPER MELT AT 1516 [K] 

Y                                         X 

0.0000 5.0000 10.000 15.000 20.000 25.000 30.000 35.000 40.000 45.000 50.000 

0.0000 0.5650 0.5200 0.5630 0.5560 0.5300 0.5110 0.4870 0.4580 0.4260 0.3890 0.3470 

- 5.00 0.5630 0.5180 0.5610 0.5540 0.5280 0.5080 0.4850 0.4560 0.4240 0.3870 0.3450 

-10.00 0.5560 0.5120 0.5540 0.5480 0.5210 0.5020 0.4780 0.4500 0.4170 0.3800 0.3390 

-15.00 0.5450 0.5020 0.5430 0.5370 0.5110 0.4910 0.4670 0.4390 0.4060 0.3690 0.3280 

-20.00 0.5300 0.4880 0.5280 0.5210 0.4950 0.4760 0.4520 0.4240 0.3910 0.3540 0.3130 

-25.00 0.5110 0.4700 0.5080 0.5020 0.4760 0.4560 0.4320 0.4040 0.3710 0.3340 0.2930 

-30.00 0.4870 0.4480 0.4850 0.4780 0.4520 0.4320 0.4080 0.3800 0.3470 0.3100 0.2690 

-35.00 0.4580 0.4220 0.4560 0.4500 0.4240 0.4040 0.3800 0.3520 0.3190 0.2820 0.2410 

-40.00 0.4260 0.3920 0.4240 0.4170 0.3910 0.3710 0.3470 0.3190 0.2870 0.2500 0.2080 

-45.00 0.3890 0.3570 0.3870 0.3800 0.3540 0.3340 0.3100 0.2820 0.2500 0.2130 0.1710 

-50.00 0.3470 0.3190 0.3450 0.3390 0.3130 0.2930 0.2690 0.2410 0.2080 0.1710 0.1300 

TABLE VI 

THE VELOCITY PROFILES OF COPPER MELT AT 1556 [K] 

Y                                         X 

0.0000 5.0000 10.000 15.000 20.000 25.000 30.000 35.000 40.000 45.000 50.000 

0.0000 0.6100 0.6070 0.6000 0.5890 0.5720 0.5510 0.5250 0.4950 0.4590 0.4200 0.3750 

- 5.00 0.6070 0.6050 0.5980 0.5860 0.5700 0.5490 0.5230 0.4920 0.4570 0.4170 0.3730 

-10.00 0.6000 0.5980 0.5910 0.5790 0.5630 0.5420 0.5160 0.4850 0.4500 0.4100 0.3660 

-15.00 0.5890 0.5860 0.5790 0.5670 0.5510 0.5300 0.5040 0.4740 0.4380 0.3980 0.3540 

-20.00 0.5720 0.5700 0.5630 0.5510 0.5350 0.5130 0.4880 0.4570 0.4220 0.3820 0.3370 

-25.00 0.5510 0.5490 0.5420 0.5300 0.5130 0.4920 0.4660 0.4360 0.4010 0.3610 0.3160 

-30.00 0.5250 0.5230 0.5160 0.5040 0.4880 0.4660 0.4410 0.4100 0.3750 0.3350 0.2900 

-35.00 0.4950 0.4920 0.4850 0.4740 0.4570 0.4360 0.4100 0.3800 0.3440 0.3050 0.2600 

-40.00 0.4590 0.4570 0.4500 0.4380 0.4220 0.4010 0.3750 0.3440 0.3090 0.2690 0.2250 

-45.00 0.4200 0.4170 0.4100 0.3980 0.3820 0.3610 0.3350 0.3050 0.2690 0.2290 0.1850 

-50.00 0.3750 0.3730 0.3660 0.3540 0.3370 0.3160 0.2900 0.2600 0.2250 0.1850 0.1400 
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TABLE VII 

THE VELOCITY PROFILES OF COPPER MELT AT 1596 [K] 

Y                                         X 

0.0000 5.0000 10.000 15.000 20.000 25.000 30.000 35.000 40.000 45.000 50.000 

0.0000 0.6000 0.6510 0.6430 0.6310 0.6130 0.5910 0.5630 0.5300 0.4920 0.4500 0.4020 

- 5.00 0.6510 0.6480 0.6410 0.6280 0.6110 0.5880 0.5600 0.5280 0.4900 0.4470 0.3990 

-10.00 0.6430 0.6410 0.6330 0.6210 0.6030 0.5800 0.5530 0.5200 0.4820 0.4400 0.3920 

-15.00 0.6310 0.6280 0.6210 0.6080 0.5910 0.5680 0.5400 0.5070 0.4700 0.4270 0.3790 

-20.00 0.6130 0.6110 0.6030 0.5910 0.5730 0.5500 0.5230 0.4900 0.4520 0.4090 0.3620 

-25.00 0.5910 0.5880 0.5800 0.5680 0.5500 0.5280 0.5000 0.4670 0.4300 0.3870 0.3390 

-30.00 0.5630 0.5600 0.5530 0.5400 0.5230 0.5000 0.4720 0.4400 0.4020 0.3590 0.3110 

-35.00 0.5300 0.5280 0.5200 0.5070 0.4900 0.4670 0.4400 0.4070 0.3690 0.3260 0.2790 

-40.00 0.4920 0.4900 0.4820 0.4700 0.4520 0.4300 0.4020 0.3690 0.3310 0.2890 0.2410 

-45.00 0.4500 0.4470 0.4400 0.4270 0.4090 0.3870 0.3590 0.3260 0.2890 0.2460 0.1980 

-50.00 0.4020 0.3990 0.3920 0.3790 0.3620 0.3390 0.3110 0.2790 0.2410 0.1980 0.1500 

 

TABLE VIII 

THE VELOCITY PROFILES OF COPPER MELT AT 1636 [K] 

Y                                         X 

0.0000 5.0000 10.000 15.000 20.000 25.000 30.000 35.000 40.000 45.000 50.000 

0.0000 0.6990 0.6960 0.6880 0.6750 0.6560 0.6320 0.6020 0.5670 0.5270 0.481 0.4300 

- 5.00 0.6960 0.6940 0.6860 0.6720 0.6530 0.6290 0.5990 0.5640 0.5240 0.478 0.4270 

-10.00 0.6880 0.6860 0.6770 0.6640 0.6450 0.6210 0.5910 0.5560 0.5160 0.470 0.4190 

-15.00 0.6750 0.6720 0.6640 0.6510 0.6320 0.6070 0.5780 0.5430 0.5030 0.457 0.4060 

-20.00 0.6560 0.6530 0.6450 0.6320 0.6130 0.5890 0.5590 0.5240 0.4840 0.438 0.3870 

-25.00 0.6320 0.6290 0.6210 0.6070 0.5890 0.5640 0.5350 0.5000 0.4590 0.414 0.3630 

-30.00 0.6020 0.5990 0.5910 0.5780 0.5590 0.5350 0.5050 0.4700 0.4300 0.384 0.3330 

-35.00 0.5670 0.5640 0.5560 0.5430 0.5240 0.5000 0.4700 0.4350 0.3950 0.349 0.2980 

-40.00 0.5270 0.5240 0.5160 0.5030 0.4840 0.4590 0.4300 0.3950 0.3550 0.309 0.2580 

-45.00 0.4810 0.4780 0.4700 0.4570 0.4380 0.4140 0.3840 0.3490 0.3090 0.263 0.2120 

-50.00 0.4300 0.4270 0.4190 0.4060 0.3870 0.3630 0.3330 0.2980 0.2580 0.212 0.1610 

 

 

TABLE IX 

THE MAXIMUM VALUEAT THE SPECIFIED TEMPERATURESOF THE VELOCITY PROFILES 

T [K] 1356 1396 1436 1476 1516 1556 1596 1636 

nvalue of isolines          19 21 23 24 27 28 12 12 

 

The copper flow velocity distribution profiles in the lower trough at 1356 [K], 1396 [K], 

1436 [K], 1476 [K], 1516 [K], 1556 [K], 1596 [K], and 1636 [K] in the plane in projections 

on XOY, as well as in space in the XYZ coordinate system are presented in Fig. 2 and Tables 

I-VIII. 

The maximum isoline value was observed at 1556 [K] and are presented in Table IX. The 

distribution of isolines was not dense at lower temperatures, for example, at 1356 [K], or at 

higher temperatures, for example, at 1596 [K]. The calculations indicated inhomogeneity of 

the melt near the melting temperature, which confirmed the presence of a melt cluster 
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structure. Calculations also indicate inhomogeneity at 1596 [K] and above, which is due to 

thermal loosening of the metallic melt structure and is the cause of mechanical defects in 

obtaining the intermediate product.  

The temperature of the copper melt flow in the process equipment was theoretically 

calculated using numerical methods. The correctness and adequacy of our calculations were 

confirmed by verification with real temperatures of copper melt movement in the range of 

1426-1556 [K], which are close to the temperatures in industrial conditions. 

 

IV. CONCLUSIONS 

1. In a limited area    with smooth border   we consider nonlinear stationary equations 

representing a mathematical model of the incompressible melt motion. We justify 

the limit transition from the solutions of the Navier-Stokes approximating system 

equations to the original system. The solution of the approximate problem (3) – (4) 

at    is a strongly generalized solution of the original problems (1) – (2). The 

analytical proof consists of three stages: obtaining a priori estimates using 

Galerkin's method, and limit transfer. The systems described by the Navier-Stokes 

equations and having certain boundary conditions (pressures or velocities) at all 

boundaries were closed. Such systems include those bounded by impermeable walls, 

free surfaces under a known pressure, and movable walls under a known pressure. 

2. A numerical scheme for the regularization of the boundary value problems of 

incompressible fluid motion equations was developed. The complexity of solving 

these problems lies in the fact that the system of differential equations is non-

evolutionary. The incompressible melt motion equation does not contain the time 

derivative of the pressure function. By introducing a small parameter in the original 

equation, the time derivative of the pressure function can be transformed from a 

non-evolutionary system of equations to an evolutionary system. Convergence of 

the solution of the approximation problem to the original boundary value problem 

of metallic melt motion was established.  

3. The validation of the obtained analytical and numerical results with real parameters 

of copper melt movement in the process equipment for the SCR PROCESS copper 

rod line confirmed the validity and reliability of our research. The correctness and 

adequacy of analytical and numerical calculations were confirmed by verification 

with real temperatures of copper melt movement in the range of 1426-1556 [K], 

which are close to the temperatures in industrial conditions. The calculations show 

that the average value of the isoline velocity is approximately equal to the average 

velocity of the copper melt for the SCR PROCESS copper rod line of the 

Zhezkazgantsvetmet Production Association.   The analytical, empirical and 

numerical results show that the best melting occurred at 1556 [K]. A conclusion 

may review the main points of the paper, do not replicate the abstract as the 

conclusion. A conclusion might elaborate on the importance of the work or suggest 

applications and extensions. 

4. The verification of analytical results with empirical ones allowed the development 

of a mathematical model of melt motion and the numerical integration algorithm of 

hydrodynamic equations, which will allow the prediction of technological 

parameters of casting to obtain high-quality products.  
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