
LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374 E-ISSN:1855-363X
VOL. 23, NO. S4(2025)

3073

APPLICATIONS OF DYNAMIC GRAPH ALGORITHMS IN REAL-TIME TRAFFIC AND

NETWORK OPTIMIZATION

Ms. Navjot Kaur1

1Shaheed Major Harminderpal Singh Govt. College,Mohali, India

navjotkaur111777@gmail.com1

Received: 02nd August 2025 Revised: 25th August 2025 Accepted: 9th Sept 2025

ABSTRACT

This paper presents an exhaustive survey of dynamic graph algorithms and their applications in real-time traffic and network

optimization. We begin by establishing the theoretical foundations of dynamic graphs, providing a taxonomy of problem

types and discussing the core data structures and complexity metrics that underpin the field. We then conduct a deep dive
into seminal algorithms for fundamental dynamic graph problems, including connectivity (Link-Cut Trees), minimum

spanning forests (Holm et al.), shortest paths (D* Lite), and maximum flow (time-expanded networks), presenting their

operational logic and mathematical formalisms. The paper subsequently bridges theory and practice by detailing the

application of these algorithms within Intelligent Transportation Systems (ITS), analyzing the complete data pipeline

architecture from sensor ingestion to real-time traffic routing and signal control. Broader applications in communication,

social, and security networks are also explored. Finally, we address the critical challenges of scalability, noisy data, and the

integration of machine learning, concluding with a discussion on the future landscape, which is increasingly shaped by the

convergence of dynamic graph neural networks and deep reinforcement learning. This survey serves as a definitive

reference for researchers and practitioners, synthesizing the state-of-the-art and charting the course for future innovation.

Keywords: Dynamic Graph Algorithms, Real-Time Traffic, Network Optimization, Route Planning, Traffic Prediction,

Adaptive Networks, Graph Theory, Intelligent Transportation Systems, Real-Time Data Processing, Urban Mobility

1. INTRODUCTION

 The Paradigm Shift from Static to Dynamic Analysis

For centuries, graphs have served as powerful mathematical structures for modeling pairwise

relationships between objects.1 Classical graph theory, however, has predominantly focused on static

graphs, where the set of vertices and edges, along with their associated properties, are assumed to be

fixed. While this paradigm has yielded foundational algorithms for problems like shortest paths,

connectivity, and network flow, its core assumption of stability is increasingly at odds with the nature

of modern systems. In an era of ubiquitous sensing, high-frequency data streams, and interconnected

digital ecosystems, networks are no longer static entities but are in a state of constant flux.1

The emergence of dynamic graph algorithms represents a necessary and fundamental evolution of

graph theory, driven by the technological and societal shift towards real-time, data-driven systems. The

limitations of static models are no longer merely theoretical but have become practical, costly

bottlenecks in critical domains.1 The rate of change in real-world networks—be it fluctuating traffic

conditions on a city grid or evolving connections in a social network—has surpassed the computational

capacity of algorithms that require a full re-computation from scratch after every minor change. The

central problem has thus shifted from "finding an optimal solution" to "efficiently maintaining an

optimal solution" as the underlying graph evolves over time.4 This paper provides a comprehensive

survey of the algorithms and systems designed to address this modern challenge.

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374 E-ISSN:1855-363X
VOL. 23, NO. S4(2025)

3074

 Motivation: The Urban Mobility and Network Management Crises
The need for efficient dynamic graph algorithms is acutely felt in two primary domains: urban mobility

and large-scale network management.

Urban Traffic Congestion: Urban traffic congestion is a global problem that incurs significant

economic costs, environmental damage, and a reduced quality of life. Traditional route planning

systems, often based on static applications of algorithms like Dijkstra's, are fundamentally ill-equipped

to handle the high-velocity changes inherent in urban traffic. Edge weights in a traffic graph,

representing travel times, are not fixed; they are highly dynamic, changing minute-by-minute due to

congestion, accidents, weather, and time-of-day patterns.5 A route that is optimal at the start of a

journey may become suboptimal moments later. This creates a critical demand for dynamic shortest

path algorithms that can efficiently re-plan routes in response to a continuous stream of real-time traffic

data.7

Network Optimization and Reliability: In parallel, the management of large-scale communication

networks, social media platforms, and cloud infrastructure presents similar challenges. Network links

can fail, new servers can be provisioned, and user connections can be established or terminated at a

massive scale and frequency.4 For network operators, maintaining an up-to-date understanding of

network connectivity, routing paths, and community structures is essential for ensuring service

reliability, security, and performance. Re-analyzing the entire network graph after each event is

computationally infeasible. Dynamic graph algorithms are therefore indispensable for tasks such as

real-time network monitoring, anomaly detection, and optimizing data flow in environments

characterized by high churn and unpredictable changes.9

 Problem Statement and Scope

The objective of this paper is to provide a comprehensive, technical survey of the algorithms, data

structures, and systems designed to answer queries on graphs undergoing a sequence of updates, such

as edge or vertex insertions and deletions. The scope of this work encompasses four key areas:

1. Theoretical Foundations: A formal definition of dynamic graph problems, the core data

structures that enable efficient updates, and the analytical frameworks used to measure their

performance.

2. Core Algorithms: A detailed exposition of seminal algorithms for fundamental problems,

including dynamic connectivity, shortest paths, minimum spanning trees, and network flow.

3. Real-World Applications: An in-depth analysis of the practical deployment of these algorithms,

with a primary focus on real-time traffic management and a secondary focus on general network

optimization.

4. Challenges and Future Directions: An examination of the major obstacles to widespread

adoption, such as scalability and data imperfection, and a look toward the future integration with

machine learning and artificial intelligence.

 Structure of the Paper
The remainder of this paper is structured as follows. Section 2 establishes the theoretical foundations of

dynamic graph algorithms. Section 3 provides a deep dive into the core algorithms for maintaining

connectivity, shortest paths, and other key graph properties. Section 4 details the application of these

algorithms in the domain of Intelligent Transportation Systems, including the architecture of real-time

data pipelines. Section 5 explores broader applications in network monitoring and analysis. Section 6

discusses the significant challenges facing the field, particularly scalability and the integration with

machine learning. Finally, Section 7 concludes the paper with a synthesis of the findings and a

perspective on future research.

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374 E-ISSN:1855-363X
VOL. 23, NO. S4(2025)

3075

2. THEORETICAL FOUNDATIONS OF DYNAMIC GRAPH ALGORITHMS

A rigorous understanding of dynamic graph algorithms requires a formal framework for classifying

problems, a knowledge of the underlying data structures that enable efficiency, and a grasp of the

analytical tools used to evaluate performance.

2.1. A Taxonomy of Dynamic Graph Problems

Dynamic graph problems are categorized based on the types of updates they support. This taxonomy is

critical as the constraints on updates directly influence algorithmic complexity and design.4

● Incremental Algorithms: These algorithms are designed for environments where the graph only

grows. They support edge and/or vertex insertions but not deletions. This model is well-suited for

applications like the growth of social networks, the expansion of knowledge graphs, or in

algorithms like Kruskal's for finding a Minimum Spanning Tree, where edges are added

incrementally.4 A classic data structure for incremental connectivity is the Disjoint-Set Union

(DSU) or Union-Find structure, which can process a sequence of union and find operations with

nearly constant amortized time per operation.10

● Decremental Algorithms: These algorithms handle environments where the graph only shrinks,

supporting edge and/or vertex deletions but not insertions. This is relevant for analyzing network

reliability under component failures or studying the dissolution of communities in social

networks.4 Decremental problems are often more complex than their incremental counterparts.

● Fully Dynamic Algorithms: This is the most general and challenging class, supporting both

insertions and deletions of edges and/or vertices.4 Fully dynamic algorithms are required for most

real-world systems, such as traffic networks where congestion (edge weight increase) and its

resolution (edge weight decrease) are continuous, or communication networks where links can

both fail and be restored.10

The following table provides a concise comparison of these algorithm classes.

Algorithm Class Supported

Operations

Typical Use Cases Key Data Structure

Example

Incremental Insertions only Social network

growth, knowledge

graph expansion,

Kruskal's algorithm

Disjoint-Set Union

(DSU) 12

Decremental Deletions only Network reliability

analysis under

cascading failures

Specialized spanning

forest structures 10

Fully Dynamic Insertions and

Deletions

Real-time traffic

routing,

communication

network monitoring,

dynamic connectivity

Link-Cut Tree (LCT)
10

Table 1:

Comparison of

Dynamic Graph

Algorithm Classes

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374 E-ISSN:1855-363X
VOL. 23, NO. S4(2025)

3076

2.2. Fundamental Data Structures

The efficiency of advanced dynamic graph algorithms often relies on sophisticated underlying data

structures. Among the most crucial is the splay tree, a self-adjusting binary search tree invented by

Sleator and Tarjan. Unlike balanced trees such as AVL or red-black trees, a splay tree does not

maintain a strict balance invariant. Instead, whenever a node is accessed, a series of rotations, known as

a "splay" operation, is performed to move that node to the root of the tree.14 This process has the effect

of not only making recently accessed elements quick to access again but also restructuring the tree to

improve the amortized performance of all operations. This self-adjusting property makes splay trees an

ideal building block for the auxiliary trees used within Link-Cut Trees to represent dynamic paths.14

2.3. Complexity and Performance Metrics

Evaluating dynamic algorithms requires a nuanced approach to complexity analysis, moving beyond

the standard worst-case analysis of static algorithms.

● Update and Query Time: The two primary performance metrics for any dynamic algorithm are

its update time (the time required to process an edge/vertex insertion or deletion) and its query

time (the time required to answer a problem-specific question about the current state of the

graph).8 The central goal is to minimize both, though there is often a trade-off between them.

● Amortized Analysis: For many dynamic data structures, particularly those involving restructuring

like splay trees, a single update operation can occasionally be very slow. However, such costly

operations are rare and typically "pay for" many subsequent fast operations. Amortized analysis

provides a more realistic performance guarantee over a sequence of operations, averaging the cost

of expensive operations with cheaper ones.14 The amortized complexity of O(log n) for Link-Cut

Tree operations is a classic example of this type of analysis.14

● Smoothed Analysis: Proposed by Spielman and Teng, smoothed analysis offers a framework that

interpolates between worst-case and average-case analysis. It considers the performance of an

algorithm on adversarial inputs that have been perturbed by a small amount of random noise.18

This model is often more representative of real-world scenarios, where inputs are neither perfectly

random nor constructed by a malicious adversary. For dynamic graph problems, smoothed analysis

helps explain why algorithms that have poor worst-case performance may still perform

exceptionally well in practice.18

3. CORE ALGORITHMS FOR DYNAMIC GRAPH MAINTENANCE

This section delves into the algorithmic machinery behind several fundamental dynamic graph

problems, presenting the operational logic and key mathematical formalisms of state-of-the-art

solutions.

3.1. Dynamic Connectivity and Spanning Forests

Maintaining connectivity information is one of the most studied problems in the dynamic graph

literature. The primary query is isConnected(u, v), which asks whether a path exists between vertices u

and v.

 The Link-Cut Tree (LCT)

The Link-Cut Tree (LCT) is a powerful data structure that maintains a forest of rooted trees under edge

additions (link) and deletions (cut). It achieves an impressive O(log n) amortized time per operation.14

● Core Idea: Preferred Path Decomposition: The central innovation of LCTs is the decomposition

of each tree in the forest into a set of disjoint paths known as preferred paths.19 For any node

v, at most one of its children can be its "preferred child." The edge connecting v to its preferred

child is a "preferred edge." A preferred path is a maximal sequence of connected preferred edges.16

This decomposition partitions the entire tree into a set of paths. Each of these preferred paths is

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374 E-ISSN:1855-363X
VOL. 23, NO. S4(2025)

3077

then represented internally by a splay tree, keyed by the depth of the nodes in the original tree.15

The root of each auxiliary splay tree maintains a "path-parent" pointer, which links it to the parent

node in the represented tree that is not part of its own preferred path.16

● The access(v) Operation: The access(v) operation is the cornerstone of all LCT functionality. Its

purpose is to restructure the internal representation so that the path from the root of the tree

containing v down to v itself becomes a single preferred path.15 This operation works by iteratively

moving up from

v towards the root. At each step, it splays the current node to the root of its auxiliary tree, adjusts

preferred child pointers to stitch together the new preferred path, and follows the path-parent

pointer to the next higher path, repeating the process until the root of the entire tree is reached.19

Core Operations:

 link(u, v): To add an edge making u a child of v (assuming u is a root and they are in different

trees), the algorithm performs access(u) and access(v), then sets the parent of u to v in the

auxiliary tree representation.14

 cut(u): To sever the edge between u and its parent, the algorithm performs access(u), which

brings u and its parent into the same splay tree. It then simply removes the parent pointer from

u.14

 findRoot(v): This is achieved by performing access(v) and then traversing to the leftmost node

(minimum depth) in the resulting splay tree.14

Dynamic Minimum Spanning Tree (MST)

Maintaining an MST in a fully dynamic graph is a significantly harder problem. The landmark

deterministic algorithm by Holm, de Lichtenberg, and Thorup achieves an O(log⁴ n) amortized update

time.24

● Hierarchical Leveling Strategy: The algorithm's efficiency stems from a clever amortization

strategy based on a hierarchical decomposition of the graph. Each edge e is assigned a level,

level(e), an integer from 0 to log n. The algorithm maintains a spanning forest F_i for the subgraph

consisting of all edges at levels i or less.24 When a tree edgee is deleted, the algorithm must find a

replacement edge. Instead of scanning all non-tree edges, it searches for a replacement at level(e).

If none is found, it searches at level(e)-1, and so on. To pay for this search, the levels of edges that

are inspected but not chosen as replacements are increased. Since an edge's level can only increase

log n times, the total work is amortized over the sequence of updates, leading to the

polylogarithmic bound.24

3.2. Dynamic Shortest Path Computation

In many applications, particularly traffic routing, the goal is not just to maintain connectivity but to

maintain the shortest path in a weighted graph where edge weights change.

 Lifelong Planning A* (LPA*) and D* Lite
D* Lite, developed by Koenig and Likhachev, is an incremental heuristic search algorithm that is

highly efficient for finding shortest paths in dynamic environments.26 It is an adaptation of LPA* and is

significantly simpler to understand and implement than its predecessor, D*.27 Its key advantage is that

it reuses information from previous searches, only re-computing path costs for the parts of the graph

affected by edge weight changes.29

● Core Logic: D* Lite performs a search backward from the goal node s_goal to the current start

node s_start. It maintains two values for each node s:

○ g(s): The current estimate of the shortest path distance from s to s_goal.

○ rhs(s): A one-step lookahead value, calculated as the minimum cost to reach s_goal through

one of s's successors.

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374 E-ISSN:1855-363X
VOL. 23, NO. S4(2025)

3078

○ The rhs(s) value is defined by the equation:

rhs(s)=s′∈Succ(s)min(c(s,s′)+g(s′))

where Succ(s) is the set of successors of s and c(s, s') is the cost of traversing the edge from s to s'.

● Local Consistency and Updates: A node s is considered locally consistent if g(s) = rhs(s). If g(s)

\neqrhs(s), the node is locally inconsistent and is placed in a priority queue for processing.24 The

algorithm's main loop,

ComputeShortestPath, repeatedly extracts the node with the lowest priority from the queue and

works to make it consistent. This process propagates cost changes through the graph. When an

edge cost changes, the rhs values of affected nodes are updated, potentially making them

inconsistent and adding them to the queue for re-evaluation.27

● Priority Queue Key: The priority of a node s in the queue is determined by a two-element key

K(s), which directs the search towards the goal, guided by a heuristic h:

K(s)=[k1(s);k2(s)]=[min(g(s),rhs(s))+h(sstart,s);min(g(s),rhs(s))]

where h(s_{start}, s) is a heuristic estimate of the distance from the current start node to s. The queue is

ordered lexicographically. This key ensures that the search expands nodes in a manner similar to A*,

focusing on promising paths first.24

3.3. Dynamic Network Flow

The dynamic maximum flow problem seeks to find the maximum amount of flow from a source to a

sink over a given time horizon T, where edge capacities and transit times are factors.32

 Time-Expanded Networks
A powerful and conceptually elegant method for solving this problem is to transform the dynamic

network into a large, static network called a time-expanded network.32

● Construction: Given a dynamic network G=(V, E) and a time horizon T, a static time-expanded

graph G_T is constructed. For each vertex v \in V, G_T contains T+1 vertices: v_0, v_1,..., v_T,

representing the state of vertex v at each discrete time step. For each edge e = (u, v) \in E with a

capacity cap(e, t) at time t and a transit time \tau_e, G_T contains edges (u_t, v_{t+\tau_e}) for all

0 \le t \le T - \tau_e. The capacity of this edge in G_T is cap(e, t).32

● Solution: Once G_T is constructed, any standard static maximum flow algorithm (e.g., Edmonds-

Karp, Dinic's) can be run on it to find the maximum flow.34 The resulting static flow can then be

mapped back to a time-dependent flow in the original dynamic network.32

● Limitations: The primary drawback of this approach is the size of G_T, which is pseudo-

polynomial in T. The number of vertices becomes |V| \times (T+1) and the number of edges can be

up to |E| \times T. This makes the method practical only for problems with relatively short and

discrete time horizons.32

The table below summarizes the performance of these key algorithms.

Problem Algorithm/Data

Structure

Update Time

(Amortized)

Query Time Notes

Dynamic

Connectivity

Link-Cut Tree

(LCT)

O(logn) O(logn) Fully Dynamic,

Deterministic 10

Dynamic MST Holm, de

Lichtenberg,

Thorup

O(log4n) O(logn/loglogn) Fully Dynamic,

Deterministic 24

Dynamic

Shortest Path

D* Lite Varies (efficient

for local

changes)

O(1) for next

move

Incremental

Heuristic Search
27

Dynamic Max- Time-Expanded N/A (rebuilds N/A Pseudo-

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374 E-ISSN:1855-363X
VOL. 23, NO. S4(2025)

3079

Flow Network + Static

Algo

static graph) polynomial in

time horizon T 32

Table 2: Time

Complexity of

Core Dynamic

Graph

Algorithms

4. APPLICATION DOMAIN I: REAL-TIME INTELLIGENT TRANSPORTATION SYSTEMS

(ITS)

The theoretical algorithms described in the previous section find their most compelling and complex

application in the domain of Intelligent Transportation Systems (ITS). The challenge of optimizing

urban mobility provides a rich testbed for dynamic graph algorithms, pushing them from abstract

theory to practical, large-scale deployment.

4.1. Modeling Urban Mobility as a Dynamic Graph

To apply graph algorithms to traffic, the urban environment must first be modeled as a dynamic graph,

G_t = (V, E, W_t).

● Vertices (V): The set of vertices V represents key locations in the road network, primarily

intersections, but also highway on/off-ramps and points of interest.2

● Edges (E): The set of directed edges E represents the road segments connecting these locations.

● Dynamic Edge Weights (W_t): The critical dynamic component is the set of edge weights W_t.

The weight w(e, t) of an edge e \in E at time t is a function representing the real-time traversal time

of that road segment. This weight is not static; it is continuously updated based on real-time data

reflecting traffic volume, speed, incidents, and weather conditions.2 A congested highway segment

will have a high weight, while a clear road will have a low weight.

4.2. Architecture of a Real-Time Traffic Data Pipeline

The dynamic edge weights that fuel the graph algorithms are the product of a sophisticated, high-

throughput data processing pipeline. This architecture is essential for bridging the gap between raw

sensor data and actionable algorithmic input.36

● Sensing Layer (Data Sources): The pipeline begins with a diverse array of sensors deployed

across the urban infrastructure. These include inductive-loop detectors embedded in roadways,

RFID tags on vehicles, automatic number plate recognition (ANPR) cameras, and widespread

CCTV video feeds.37 Increasingly, this layer is augmented by floating car data (FCD) from GPS-

enabled vehicles and mobile devices, providing rich, real-time probes of traffic speed and

density.39

● Ingestion Layer (Communication): Raw data from thousands of distributed sensors must be

collected and funneled into a central processing system. This is a classic big data challenge,

characterized by high volume and velocity. Apache Kafka has emerged as a standard technology

for this layer. It acts as a distributed, fault-tolerant messaging queue, allowing multiple data

producers (sensors) to publish streams of events to different "topics" (e.g., topic_speed_sensors,

topic_incident_alerts) without overwhelming downstream systems.41

● Processing Layer (Stream Processing): Once ingested into Kafka, the raw data streams must be

processed in real-time to be useful. Apache Spark Streaming is a powerful engine for this task. It

consumes data from Kafka topics, performs stateless and stateful transformations, and computes

the dynamic edge weights. For example, a Spark job might consume raw speed readings from a

topic, aggregate them over a 60-second sliding window for a specific road segment, and publish

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374 E-ISSN:1855-363X
VOL. 23, NO. S4(2025)

3080

the resulting average travel time (the edge weight) to an output topic or database.42

● Storage and Application Layer: The processed, real-time edge weights are persisted in a low-

latency database (e.g., Apache Cassandra) for quick retrieval.46 The application layer, which

includes the Traffic Management Center (TMC) and end-user navigation apps, queries this

database to get the current state of the traffic graph. This is where the dynamic graph algorithms

are executed to compute optimal routes or adjust traffic signal timings.47

The table below outlines the components and technologies involved in this pipeline.

Pipeline Stage Purpose Key Technologies Example Data

Sensing Collect raw data from

the physical world

IoT Sensors (loops,

RFID), CCTV, GPS,

Weather Stations

Vehicle count, speed,

location, incident

reports

Ingestion Aggregate and

transport high-

velocity data streams

Apache Kafka,

ZooKeeper

Raw event messages

published to Kafka

topics

Processing Real-time

aggregation,

transformation, and

weight calculation

Apache Spark

Streaming

Average speed per

road segment per

minute

Storage Persist processed data

for low-latency

access

Apache Cassandra,

HDFS (for

batch/historical)

Time-series of edge

weights (travel times)

Application Execute algorithms

and provide services

Dynamic Graph

Libraries, Web

Dashboards, Mobile

Apps

Optimal routes,

signal timing

adjustments, alerts

Table 3:

Components of a

Real-Time Traffic

Data Pipeline

4.3. Algorithmic Solutions for Traffic Optimization

 Dynamic Routing and Re-routing

This is the most direct application of dynamic shortest path algorithms. When a user requests a route,

the system queries for the shortest path on the current traffic graph G_t. As the user travels, the system

continuously receives updates on traffic conditions, which alter the edge weights of the graph. An

algorithm like D Lite* is ideally suited for this scenario. Instead of re-computing the entire path from

scratch with every update, D* Lite efficiently updates only the affected portion of the path, providing

real-time, dynamic re-routing instructions to the driver via a navigation app.49 This reactive capability

is crucial for navigating around newly formed congestion or unexpected incidents.7

 Intelligent Traffic Signal Control with Reinforcement Learning

Modern traffic signal control is increasingly viewed as a multi-agent reinforcement learning (MARL)

problem, where each signalized intersection acts as an autonomous agent.51 The dynamic graph model

of the traffic network provides the essential "environment" for these agents.

● State Representation: The state s_t for an agent (intersection) at time t is derived from the local

subgraph. It can include features like the queue length and vehicle waiting times on incoming

edges, which are directly computed from the real-time traffic data pipeline.53

● Action Space: The actions available to the agent are the different signal phases it can select (e.g.,

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374 E-ISSN:1855-363X
VOL. 23, NO. S4(2025)

3081

allow north-south traffic, allow east-west traffic, allow left turns).51

● Reward Function: The agent learns a policy \pi(s_t) \rightarrowa_t that maximizes a cumulative

reward. The reward function is engineered to align with traffic efficiency goals, such as

minimizing total vehicle delay or maximizing throughput (often measured by a metric called

"pressure," the difference between incoming and outgoing traffic flow).55

By interacting with the dynamic graph representation of traffic, these RL agents can learn complex,

coordinated policies that outperform traditional fixed-time or simple actuated signal plans, leading to

smoother traffic flow across the network.57

5. APPLICATION DOMAIN II: GENERAL NETWORK OPTIMIZATION AND

MONITORING

While ITS provides a highly visible application, the principles of dynamic graph algorithms are broadly

applicable to the optimization and monitoring of any network that experiences change. The core

algorithmic queries often map directly to critical operational questions in these domains.

5.1. Communication and Social Networks

Communication networks (e.g., the internet backbone, corporate WANs) and social networks are

characterized by high rates of change, or "churn."

● Dynamic Connectivity and Routing: In a communication network, links can fail or new ones can

be provisioned. A fundamental operational question is, "Can server A still reach server B after a

link failure?" This is precisely the isConnected(u,v) query. Using a Link-Cut Tree to maintain a

spanning forest of the network allows for O(log n) time answers to this question, enabling rapid

rerouting of traffic to bypass failed links and maintain service availability.9

● Community Detection and Evolution: In social networks, friendships are formed and dissolved

continuously. The findRoot(u) query in an LCT, when used to maintain connected components,

can be interpreted as, "Which community or group does this user belong to now?" Dynamic graph

algorithms can track the evolution of these communities in real time, which is invaluable for

applications like targeted advertising, content recommendation, and sociological analysis.49

5.2. Real-Time Anomaly and Threat Detection

The dynamic nature of network graphs can be harnessed for security and reliability monitoring. The

baseline of normal network evolution can be established, and deviations from this baseline can signal

anomalies.

● Monitoring Network Topology for Failures and Attacks: A sudden cascade of edge deletions in

a communication network graph could indicate a large-scale fiber cut or a coordinated denial-of-

service (DoS) attack. A dynamic connectivity algorithm can instantly detect that the graph has

partitioned into multiple components or that a critical server has become an articulation point (a

single point of failure), triggering an immediate alert to network operators.8

● Fraud Detection: In financial networks, transactions can be modeled as edges between accounts.

A sudden, unusual burst of activity (edge insertions) forming a specific subgraph pattern might

indicate fraudulent activity like money laundering. Dynamic subgraph counting algorithms can

monitor for these patterns in real time.13 The ability of dynamic algorithms to process updates and

queries at a rate that keeps pace with the network's evolution is what transforms them from

analytical tools into real-time operational instruments.61

6. SCALABILITY, CHALLENGES, AND FUTURE DIRECTIONS

Despite their theoretical power and practical utility, the widespread deployment of dynamic graph

algorithms faces significant challenges. This section explores these obstacles and outlines the future

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374 E-ISSN:1855-363X
VOL. 23, NO. S4(2025)

3082

directions of research that aim to overcome them, tracing an evolutionary path from simple reactive

algorithms to autonomous, intelligent network management systems.

6.1. The Scalability Bottleneck

As graphs grow to encompass millions or billions of nodes and edges, running dynamic algorithms

even on a single powerful machine becomes infeasible. The natural solution is to distribute the graph

and the computation across a cluster of machines. However, this introduces a new set of profound

challenges.62

● Communication Overhead: In a distributed setting, a single edge update may require information

to be exchanged between multiple machines. This communication overhead can quickly become

the primary bottleneck, dwarfed by the local computation time. Minimizing the number and size of

messages is a central goal of distributed dynamic graph algorithms.62

● Consistency and Latency: Maintaining a globally consistent view of the graph is extremely

difficult when updates are occurring concurrently across different partitions and network latency is

a factor. Ensuring that queries return correct results based on an up-to-date graph state is a major

research challenge.63

● Load Balancing: Real-world graphs often have power-law degree distributions, meaning a few

"hub" nodes are connected to many other nodes. Partitioning such graphs evenly is difficult, and

the partitions containing these hubs can become computational hotspots, leading to poor load

balancing and overall system performance degradation.62

6.2. From Reactive to Predictive Models: Handling Data Imperfection

The algorithms discussed in Section 3 are largely deterministic, reacting to discrete, well-defined

update events like delete_edge(u,v). However, real-world data, especially from physical sensors in ITS,

is messy and imperfect. This necessitates a shift from a purely deterministic view to one that can handle

noisy and uncertain data.

● Handling Noisy Sensor Data: Traffic sensors are prone to various forms of noise: random

fluctuations, systematic errors from miscalibration, and outliers due to sensor malfunction.64

Feeding this raw, noisy data directly into a dynamic routing algorithm can cause erratic and

suboptimal path choices. To counter this, a data pre-processing or filtering layer is essential.

Techniques borrowed from signal processing, such as

Simple Moving Averages (SMA), Exponential Moving Averages (EMA), and more

sophisticated methods like the Kalman filter, can be applied to the real-time data stream to

smooth out noise and provide a more stable estimate of the true travel time before it is used to

update the graph's edge weights.65

● Predictive Edge Weights with Machine Learning: The next logical step beyond cleaning

present data is to predict future data. This marks a crucial transition from a reactive to a proactive

system. Instead of just reacting to current congestion, a system can anticipate it. Machine learning

models, particularly deep learning models like Long Short-Term Memory (LSTM) networks or

Graph Neural Networks (GNNs), can be trained on historical traffic data to predict future edge

weights (e.g., travel time in the next 5-15 minutes). A dynamic routing algorithm can then

compute shortest paths based on these predicted weights, allowing it to route vehicles away from

areas that are about to become congested.68

6.3. The Next Frontier: The Convergence of Dynamic GNNs and Reinforcement Learning

The ultimate goal is to create systems that not only predict but also learn to control the network

autonomously. This is where the convergence of two cutting-edge fields—Dynamic Graph Neural

Networks (DGNNs) and Multi-Agent Reinforcement Learning (MARL)—is charting the future. This

progression represents a move from algorithmic data processing to genuine artificial intelligence for

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374 E-ISSN:1855-363X
VOL. 23, NO. S4(2025)

3083

network control.

● Dynamic Graph Neural Networks (DGNNs): While traditional GNNs are designed for static

graphs, DGNNs are a new class of models specifically architected to learn from graphs that evolve

over time. They typically combine a GNN component to capture spatial dependencies (the graph

structure) with a recurrent component (like an RNN or LSTM) to capture temporal dependencies

(how the graph changes).71 DGNNs can learn deep, complex representations of the entire spatio-

temporal state of a traffic network, providing a much richer input than simple feature vectors.73

● Advanced Multi-Agent Reinforcement Learning (MARL): As discussed in the context of

traffic signal control, MARL allows multiple agents to learn coordinated policies. The challenge in

large networks is effective coordination. Advanced MARL techniques are being developed to

allow agents to learn when and with whom to communicate, enabling them to form emergent,

system-wide strategies like "green waves" without centralized control.51

● Synergy and the Autonomous Network: The future of intelligent network management lies in

the tight integration of these two domains. DGNNs will provide the powerful, learned state

representations that MARL agents need to make intelligent decisions. An RL agent controlling a

traffic intersection will no longer just see queue lengths; it will receive a rich embedding from a

DGNN that captures the complex traffic patterns in its entire neighborhood and their likely

evolution. This synergy will enable the creation of truly autonomous, adaptive systems that can

learn to manage complex network dynamics at a scale and level of sophistication far beyond

current capabilities.

7. CONCLUSION

This survey has traversed the landscape of dynamic graph algorithms, from their theoretical

underpinnings to their practical application in critical real-time systems. The analysis reveals a clear

evolutionary trajectory. The field originated with the fundamental need to move beyond the limitations

of static graph analysis, leading to the development of elegant and efficient data structures like Link-

Cut Trees and incremental search algorithms like D* Lite. These theoretical tools provide the essential

machinery for maintaining connectivity, shortest paths, and other vital properties in networks that are in

a constant state of flux.

The deployment of these algorithms in domains such as Intelligent Transportation Systems has

underscored a critical dependency: their real-world effectiveness is inextricably linked to the robustness

and sophistication of the underlying data architecture. The successful application of an algorithm like

D* Lite for real-time traffic routing is not merely an algorithmic achievement but an engineering one,

requiring a high-throughput pipeline capable of ingesting, processing, and serving data from thousands

of sensors with minimal latency.

However, as we look to the future, the primary challenges are no longer just about reacting to change

more quickly. The key obstacles are now centered on scalability in distributed environments and the

inherent imperfection of real-world data. The research frontier is consequently shifting from purely

deterministic, reactive algorithms to more intelligent, proactive systems. This transition is being driven

by the integration of machine learning, which allows for the cleaning of noisy sensor data and the

prediction of future network states.

The most promising future direction lies in the deep convergence of Dynamic Graph Neural Networks

and Multi-Agent Reinforcement Learning. This synergy promises to elevate network management from

algorithmic optimization to autonomous control. By leveraging DGNNs to learn rich spatio-temporal

representations and MARL to develop coordinated, intelligent policies, we are moving towards the

creation of systems that can autonomously learn, predict, and adapt to the complex dynamics of large-

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374 E-ISSN:1855-363X
VOL. 23, NO. S4(2025)

3084

scale networks. This represents the next paradigm shift, promising a future of truly intelligent and

responsive transportation and communication infrastructures.

REFERENCES

[1]. Apssouza22. (n.d.). A full big data pipeline (Lambda Architecture) with Spark, Kafka, HDFS

and Cassandra. GitHub. Retrieved August 7, 2025, from https://github.com/apssouza22/big-

data-pipeline-lambda-arch

[2]. Ben-Akiva, M., Bierlaire, M., Koutsopoulos, H., & Mishalani, R. (1998). A dynamic traffic

assignment model for the analysis of complex traffic systems. DSpace@MIT. Retrieved August

7, 2025, from https://dspace.mit.edu/bitstream/handle/1721.1/99219/Ben-

Akiva_A%20dynamic%20traffic.pdf?sequence=1&isAllowed=y

[3]. C++. (n.d.). Link-cut Tree Algorithm. Retrieved August 7, 2025, from

https://cplusplus.algorithmexamples.com/web/Data%20Structures/Link-cut%20Tree.html

[4]. CS 270. (2023, January 31). 1 Overview 2 Problem that Link-Cut Trees Solves. Retrieved

August 7, 2025, from https://cs270.org/spring23/lec/lec5.pdf

[5]. Das, K., & Gupta, P. (2025). ReInc: Scaling Training of Dynamic Graph Neural Networks.

arXiv. Retrieved August 7, 2025, from https://arxiv.org/html/2501.15348v1

[6]. dclliiitd. (n.d.). Real Time Graph Analytics. Retrieved August 7, 2025, from

https://dcll.iiitd.edu.in/researchtopics/real-time-graph-analytics/

[7]. de-Moraes, L., & da-Silva, J. E. (2021). Implementation of Dynamic Traffic Routing for Traffic

Congestion: A Review. ResearchGate. Retrieved August 7, 2025, from

https://www.researchgate.net/publication/286439442_Implementation_of_Dynamic_Traffic_Ro

uting_for_Traffic_Congestion_A_Review

[8]. Estuary. (n.d.). How to Build Real-Time Data Pipelines: A Comprehensive Guide. Retrieved

August 7, 2025, from https://estuary.dev/blog/build-real-time-data-pipelines/

[9]. GeeksforGeeks. (n.d.-a). Dynamic Connectivity | Set 1 (Incremental). Retrieved August 7, 2025,

from https://www.geeksforgeeks.org/dsa/dynamic-connectivity-set-1-incremental/

[10]. GeeksforGeeks. (n.d.-b). Introduction to Link-Cut Tree. Retrieved August 7, 2025, from

https://www.geeksforgeeks.org/dsa/introduction-to-link-cut-tree/

[11]. GeeksforGeeks. (n.d.-c). What is Link-Cut Tree?. Retrieved August 7, 2025, from

https://www.geeksforgeeks.org/dsa/what-is-link-cut-tree/

[12]. Girao, L. M., Rocha, P. M., & Goncalves, J. R. (2017). Critical Review of Reinforcement

Learning Based Adaptive Traffic Signal Control. INF/PUC-Rio. Retrieved August 7, 2025,

from https://www-di.inf.puc-rio.br/~sardinha/Students/2021_87687_MiguelCoelho.pdf

[13]. Google. (n.d.). GNNBook@2023: Dynamic Graph Neural Networks. Retrieved August 7, 2025,

from https://graph-neural-networks.github.io/gnnbook_Chapter15.html

[14]. Harvard University. (2017, April 18). 1 Overview 2 Link Cut Trees 3 Blocking Flow. Retrieved

August 7, 2025, from https://people.seas.harvard.edu/~cs224/spring17/lec/lec26.pdf

[15]. Instaclustr. (n.d.). How To Use Apache Spark and Kafka® for Machine Learning Part 1.

Retrieved August 7, 2025, from https://www.instaclustr.com/blog/apache-spark-and-apache-

kafka/

[16]. Isupova, M. Y., Kuleshov, A. E., & Zamyatina, E. B. (2024). Finding Maximum Independent

Sets in Dynamic Graphs using Unsupervised Learning. arXiv. Retrieved August 7, 2025, from

https://arxiv.org/html/2505.13754v1

[17]. Ksolves. (n.d.). Building a Big Data Pipeline with Apache Spark and Kafka. Retrieved August

7, 2025, from https://www.ksolves.com/blog/big-data/apache-spark-kafka-your-big-data-

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374 E-ISSN:1855-363X
VOL. 23, NO. S4(2025)

3085

pipeline

[18]. Kumar, N. S., & Madhusudhan, K. (2024). A Review of Deep Reinforcement Learning for

Traffic Signal Control. IJFMR. Retrieved August 7, 2025, from

https://www.ijfmr.com/papers/2024/1/11650.pdf

[19]. Li, Z., Sun, Y., He, C., & Zhang, Y. (2025). A survey of dynamic graph neural networks. arXiv.

Retrieved August 7, 2025, from https://arxiv.org/html/2404.18211v1

[20]. Lindstrom, D. (2025). Anomaly Detection in Dynamic Graphs: A Comprehensive Survey. arXiv.

Retrieved August 7, 2025, from https://arxiv.org/html/2406.00134v1

[21]. Luis Rios's Home Page. (n.d.). D Lite Demonstration*. Retrieved August 7, 2025, from

https://www.luisrios.eti.br/public/en_us/research/d_star_lite_demo/

[22]. Madhusudhan, K., & Kumar, N. S. (2023). Deep Reinforcement Learning for Traffic Signal

Control: A Review. SciSpace. Retrieved August 7, 2025, from https://scispace.com/pdf/deep-

reinforcement-learning-for-traffic-signal-control-a-20p6f6o66y.pdf

[23]. MDPI. (2022). Deep Reinforcement Learning for Traffic Signal Control Model and Adaptation

Study. Retrieved August 7, 2025, from https://www.mdpi.com/1424-8220/22/22/8732

[24]. MDPI. (2023). Traffic Signal Control via Reinforcement Learning: A Review on Applications

and Innovations. Retrieved August 7, 2025, from https://www.mdpi.com/2412-3811/10/5/114

[25]. Ministry of Transport, Communications and Information Technology. (n.d.). Intelligent

Transportation Systems (ITS) Systems Engineering (SE...). Retrieved August 7, 2025, from

https://www.dot.state.mn.us/project-development/subject-guidance/intelligent-transportation-

systems/process.html

[26]. Moonlight. (n.d.). [Literature Review] Smoothed Analysis of Dynamic Graph Algorithms.

Retrieved August 7, 2025, from https://www.themoonlight.io/en/review/smoothed-analysis-of-

dynamic-graph-algorithms

[27]. Number Analytics. (n.d.-a). Dynamic Graph Algorithms 101. Retrieved August 7, 2025, from

https://www.numberanalytics.com/blog/ultimate-guide-fully-dynamic-graph-algorithms

[28]. Number Analytics. (n.d.-b). Dynamic Graph Algorithms: A Deep Dive. Retrieved August 7,

2025, from https://www.numberanalytics.com/blog/dynamic-graph-algorithms-deep-dive

[29]. Number Analytics. (n.d.-c). Link/Cut Trees: A Deep Dive. Retrieved August 7, 2025, from

https://www.numberanalytics.com/blog/link-cut-trees-deep-dive

[30]. Number Analytics. (n.d.-d). Mastering D Algorithm in Robotics*. Retrieved August 7, 2025,

from https://www.numberanalytics.com/blog/mastering-d-star-algorithm-in-robotics

[31]. Number Analytics. (n.d.-e). Mastering Dynamic Graph Algorithms. Retrieved August 7, 2025,

from https://www.numberanalytics.com/blog/mastering-dynamic-graph-algorithms

[32]. Number Analytics. (n.d.-f). Mastering Dynamic Graphs. Retrieved August 7, 2025, from

https://www.numberanalytics.com/blog/mastering-dynamic-graphs

[33]. Number Analytics. (n.d.-g). Mastering Link/Cut Trees. Retrieved August 7, 2025, from

https://www.numberanalytics.com/blog/mastering-link-cut-trees

[34]. Number Analytics. (n.d.-h). Solving Max Flow with Dynamic Programming. Retrieved August

7, 2025, from https://www.numberanalytics.com/blog/dynamic-programming-max-flow

[35]. OpenLogic. (n.d.). Processing Data Streams with Kafka and Spark. Retrieved August 7, 2025,

from https://www.openlogic.com/blog/kafka-and-spark-streaming

[36]. PuppyGraph. (n.d.). Distributed Graph Algorithms: Benefits and Use Cases. Retrieved August

7, 2025, from https://www.puppygraph.com/blog/distributed-graph-algorithms

[37]. ResearchGate. (n.d.-a). (PDF) SCALABLE ALGORITHMS FOR DYNAMIC GRAPH

Retrieved August 7, 2025, from

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374 E-ISSN:1855-363X
VOL. 23, NO. S4(2025)

3086

https://www.researchgate.net/publication/387745777_SCALABLE_ALGORITHMS_FOR_DY

NAMIC_GRAPH_CONSTRUCTION_IN_DISTRIBUTED_SYSTEMS

[38]. ResearchGate. (n.d.-b). A dynamic route guidance system based on real traffic data. Retrieved

August 7, 2025, from

https://www.researchgate.net/publication/222562161_A_dynamic_route_guidance_system_base

d_on_real_traffic_data

[39]. ResearchGate. (n.d.-c). Real-time traffic simulation system architecture. Retrieved August 7,

2025, from https://www.researchgate.net/figure/Real-time-traffic-simulation-system-

architecture_fig3_3154088

[40]. ResearchGate. (n.d.-d). The maximum flow in dynamic networks. Retrieved August 7, 2025,

from

https://www.researchgate.net/publication/228947735_The_maximum_flow_in_dynamic_netwo

rks

[41]. ResearchGate. (n.d.-e). Traffic Signal Control via Reinforcement Learning: A Review on

Applications and Innovations. Retrieved August 7, 2025, from

https://www.researchgate.net/publication/391508029_Traffic_Signal_Control_via_Reinforceme

nt_Learning_A_Review_on_Applications_and_Innovations

[42]. ResearchGate. (n.d.-f). ReInc: Scaling Training of Dynamic Graph Neural Networks. Retrieved

August 7, 2025, from

https://www.researchgate.net/publication/388422165_ReInc_Scaling_Training_of_Dynamic_Gr

aph_Neural_Networks

[43]. Reddit. (n.d.). Techniques to filter noisy signals from sensors. Retrieved August 7, 2025, from

https://www.reddit.com/r/embedded/comments/11vldj8/techniques_to_filter_noisy_signals_fro

m_sensors/

[44]. RGBSI. (n.d.). Key Components of Intelligent Transportation Systems (ITS). Retrieved August

7, 2025, from https://blog.rgbsi.com/components-of-intelligent-transportation-systems-its

[45]. Sapien. (n.d.). Managing Noisy Data: Key Strategies for Accurate Data Insights. Retrieved

August 7, 2025, from https://www.sapien.io/blog/key-techniques-for-dealing-with-noisy-data

[46]. SIAM.org. (n.d.). Inspired by Nature: Dynamic Graphs and Their Applications. Retrieved

August 7, 2025, from https://www.siam.org/publications/siam-news/articles/inspired-by-nature-

dynamic-graphs-and-their-applications/

[47]. Snowflake. (n.d.). Traffic management using real-time data. Retrieved August 7, 2025, from

https://www.snowflake.com/trending/traffic-management-using-real-time-data/

[48]. Sunscrapers. (n.d.). How to Build a Streaming Data Pipeline with Apache Kafka and Spark?.

Retrieved August 7, 2025, from https://sunscrapers.com/blog/how-to-build-a-streaming-data-

pipeline-with-apache-kafka-and-spark/

[49]. Symmetry Electronics. (n.d.). What is a Smart Traffic Management System?. Retrieved August

7, 2025, from https://www.symmetryelectronics.com/blog/what-is-a-smart-traffic-management-

system/

[50]. The Science and Information (SAI) Organization. (n.d.). Noise Reduction Techniques in Adas

Sensor Data Management: Methods and Comparative Analysis. Retrieved August 7, 2025, from

https://thesai.org/Downloads/Volume15No8/Paper_68-

Noise_Reduction_Techniques_in_Adas_Sensor_Data_Management.pdf

[51]. TU Dortmund. (n.d.). Dynamic Route Planning with Real-Time Traffic Predictions. Retrieved

August 7, 2025, from https://www-ai.cs.tu-

dortmund.de/PERSONAL/MORIK/papers/pdf/Dynamic_Route_Planning_with_Real_Time_Tr

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT
ISSN:1581-5374 E-ISSN:1855-363X
VOL. 23, NO. S4(2025)

3087

affic_Predictions.pdf

[52]. UGi - UG Infosystems. (n.d.). Architecture for a real-time traffic surveillance system. Retrieved

August 7, 2025, from https://uginfosystems.com/architecture-for-a-real-time-traffic-

surveillance-system/

[53]. USACO Guide. (n.d.). Link Cut Tree. Retrieved August 7, 2025, from

https://usaco.guide/adv/link-cut-tree

[54]. Vlasiuc, A. (2021). Dynamic Routing for Traffic Flow through Multi-agent Systems. arXiv.

Retrieved August 7, 2025, from https://arxiv.org/abs/2105.00434

[55]. Wikipedia. (n.d.-a). Dynamic connectivity. Retrieved August 7, 2025, from

https://en.wikipedia.org/wiki/Dynamic_connectivity

[56]. Wikipedia. (n.d.-b). Lifelong Planning A*. Retrieved August 7, 2025, from

https://en.wikipedia.org/wiki/Lifelong_Planning_A*

[57]. Wikipedia. (n.d.-c). Link/cut tree. Retrieved August 7, 2025, from

https://en.wikipedia.org/wiki/Link/cut_tree

[58]. Wikipedia. (n.d.-d). Maximum flow problem. Retrieved August 7, 2025, from

https://en.wikipedia.org/wiki/Maximum_flow_problem

[59]. Yao, T., Lu, H., Huang, Z., Li, Y., Lin, Y., Liu, C., . . . Zhu, Z. (2023). Deep Reinforcement

Learning for Traffic Light Control in Intelligent Transportation Systems. arXiv. Retrieved

August 7, 2025, from https://arxiv.org/abs/2302.03669

[60]. Zwick, U. (2001). Recent Advances in Fully Dynamic Graph Algorithms – A Quick Reference

Guide. arXiv. Retrieved August 7, 2025, from https://arxiv.org/pdf/2102.11169

	1. INTRODUCTION
	2. THEORETICAL FOUNDATIONS OF DYNAMIC GRAPH ALGORITHMS
	2.1. A Taxonomy of Dynamic Graph Problems
	2.2. Fundamental Data Structures
	2.3. Complexity and Performance Metrics

	3. CORE ALGORITHMS FOR DYNAMIC GRAPH MAINTENANCE
	3.1. Dynamic Connectivity and Spanning Forests
	3.2. Dynamic Shortest Path Computation
	3.3. Dynamic Network Flow

	4. APPLICATION DOMAIN I: REAL-TIME INTELLIGENT TRANSPORTATION SYSTEMS (ITS)
	4.1. Modeling Urban Mobility as a Dynamic Graph
	4.2. Architecture of a Real-Time Traffic Data Pipeline
	4.3. Algorithmic Solutions for Traffic Optimization

	5. APPLICATION DOMAIN II: GENERAL NETWORK OPTIMIZATION AND MONITORING
	5.1. Communication and Social Networks
	5.2. Real-Time Anomaly and Threat Detection

	6. SCALABILITY, CHALLENGES, AND FUTURE DIRECTIONS
	6.1. The Scalability Bottleneck
	6.2. From Reactive to Predictive Models: Handling Data Imperfection
	6.3. The Next Frontier: The Convergence of Dynamic GNNs and Reinforcement Learning

	7. CONCLUSION
	REFERENCES

