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Abstract: The rapid growth of urbanization and the increasing number of vehicles have made road traffic 

management a critical research challenge. Effective analysis of spatial and temporal traffic data is essential for 

reducing congestion, enhancing safety, and improving transportation efficiency. In this study, an agglomerative 

clustering algorithm is integrated with deep learning techniques to model and analyze complex traffic patterns. 

Agglomerative clustering is employed to group similar spatial–temporal traffic data segments, enabling the 

identification of hidden structures and congestion-prone zones. The clustered data is then processed using deep 

learning models to capture nonlinear dependencies and dynamic fluctuations in traffic flow. This hybrid approach 

leverages the unsupervised learning capability of hierarchical clustering to provide meaningful data partitioning 

while utilizing the predictive power of deep learning for accurate traffic state estimation. Experimental evaluations 

on real-world traffic datasets demonstrate that the proposed framework achieves significant improvements in pattern 

recognition, anomaly detection, and congestion forecasting compared to conventional methods. The results highlight 

the potential of combining agglomerative clustering with deep learning for intelligent transportation systems and 
smart city applications. 

 
Keywords: Agglomerative clustering, deep learning, spatial-temporal analysis, road traffic, congestion forecasting, 
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Introduction 

Deep Learning, as a subset of Machine Learning, plays a vital role in achieving the broader 

characteristics of Artificial Intelligence. It enables machines to simulate the functioning of 

human brain neurons through interconnected networks[1][2] This work emphasizes the 

application of Deep Learning in the domain of spatial-temporal road traffic data analysis, where 

“spatial” represents traffic location and “temporal” refers to time-related patterns. Traffic 
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congestion is a frequent challenge in most metropolitan regions across the globe, making this an 

area of significant importance. 

The discussion includes various aspects such as roadway infrastructure, the rapid increase in 

vehicle usage, economic expenditure by commuters, accident statistics including age groups of 

victims, and the prediction of future traffic-related challenges. The research problem has been 

structured around two key datasets that form the basis of experimental analysis. Our contribution 

is illustrated through a block diagram that outlines the flow of the proposed methodology. 

Additionally, safety measures, traffic control strategies, and congestion mitigation practices are 

examined along with their key characteristics[3][4]. 

The evaluation procedure for traffic congestion is presented to highlight its effectiveness. The 

motivation behind this research lies in addressing real-world challenges of traffic management 

through Deep Learning approaches. The objectives focus on identifying the major research goals 

in congestion data analysis, while the outcomes are expected to provide benefits for future 

studies and fill existing research gaps in the field. Furthermore, the work organization is 

outlined, covering the progression from introduction to conclusion and future work[5]. Due to 

the emerging growth in technology of Big-data analytics and Artificial Intelligence, it is highly 

applicable to make use of Deep learning concept in vehicular traffic congestion approaches. It is 

acceptable that the growth of road traffic data is applicable in strong clustering models. 

Generally, in any road network, vehicles traffic congestion causes a problem in increase of 

vehicles crossing the maximum limits that leads to severity. Vehicles detection and its 

surveillance at road traffic in reality includes additional care to take certain decisions in 

clearance of traffic without affecting the commoners on road. The rising population in large 

cities arises the high level requests in regard of public transport which plays an important factor 

of road traffic difficulties over the years. An extended time of travelling because of traffic jam, 

common people faces certain problems which affects their work and reach to destination . The 

improvement of Intelligent Transportation System(ITS) acts its vital role in the traffic 

recognition and prediction in density areas of a city[6][7][8] 

The exponential growth of urbanization and rapid industrial development in the twenty-first 

century has led to an unprecedented increase in the number of vehicles on roads, posing 

significant challenges to traffic management, urban planning, and intelligent transportation 

systems, and creating a global concern regarding congestion, safety, and environmental 

sustainability. Road traffic congestion, which occurs when traffic demand exceeds roadway 

capacity, is a complex phenomenon influenced by spatial factors such as road networks, urban 

layouts, and geographic constraints, and temporal factors such as peak hours, seasonal variations, 

and dynamic changes in traffic flow patterns[9]. The analysis of such spatial and temporal traffic 

data is essential not only for reducing congestion and enhancing commuter safety but also for 

optimizing transportation infrastructures, minimizing economic losses due to delays, lowering 

environmental pollution caused by excessive fuel consumption, and enabling the advancement of 

smart city initiatives[10][11]. Traditional traffic analysis methods have been limited in their 

capacity to capture the nonlinear dynamics and multidimensional characteristics of traffic data, 

leading researchers to explore advanced computational intelligence approaches, including deep 

learning and clustering algorithms, which can provide more accurate, adaptive, and scalable 

solutions. Deep learning, as an advanced branch of machine learning, mimics the structure and 

functionality of the human brain through artificial neural networks, particularly deep neural 

architectures, enabling machines to learn abstract representations and capture intricate patterns in 
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large-scale datasets[4][8]. This paradigm has demonstrated remarkable success in domains such 

as computer vision, natural language processing, and speech recognition, and its application in 

transportation research has gained increasing attention, especially in the modeling and 

forecasting of spatial-temporal traffic data. Deep learning methods, when integrated with 

clustering algorithms such as agglomerative clustering, provide a hybrid analytical framework 

that can identify hidden structures within data, group traffic patterns based on similarity, and 

enhance predictive modeling by reducing data dimensionality and improving the interpretability 

of traffic features[7]. Agglomerative clustering, a hierarchical clustering algorithm, is 

particularly suitable for traffic data analysis because it operates without prior assumptions about 

the number of clusters, progressively merging data points or groups based on their similarity 

measures until an optimal hierarchical structure is formed, which reflects the natural groupings 

inherent in spatial-temporal data. By applying this algorithm to traffic datasets, researchers can 

reveal congestion-prone regions, discover recurrent traffic states, and provide essential inputs for 

deep learning models that are subsequently used for prediction and decision-making[12] 

The integration of agglomerative clustering with deep learning-based traffic analysis addresses 

multiple challenges that conventional statistical and rule-based methods fail to resolve. First, 

traffic data is inherently high-dimensional and heterogeneous, encompassing information such as 

roadway attributes, vehicle density, traffic flow rates, signal timings, meteorological conditions, 

socioeconomic activities, accident records, and even contextual human behavior such as age, 

travel expenditure, or trip purpose[13]. Agglomerative clustering helps partition this complex 

data into meaningful clusters, thereby enabling deep learning models to learn from structured and 

semantically rich inputs. Second, traffic data exhibits strong temporal dependencies, with 

fluctuations occurring on scales ranging from minutes to months, as well as spatial 

interdependencies, where the condition of one road segment affects neighboring regions, 

requiring advanced models capable of learning both local and global patterns.[14] Deep learning 

architectures, particularly recurrent neural networks (RNNs), long short-term memory networks 

(LSTMs), and convolutional neural networks (CNNs), have shown the capability to model 

sequential dependencies and spatial correlations, but their performance significantly improves 

when the training data is pre-processed and organized using unsupervised clustering algorithms 

such as agglomerative clustering.Third, traffic congestion analysis is not merely about describing 

present conditions but also about forecasting future trends, predicting potential bottlenecks, and 

proposing proactive measures for traffic control and urban infrastructure development. In this 

regard, the hybrid approach of clustering and deep learning offers a powerful methodology that 

combines the strengths of unsupervised and supervised paradigms to deliver more robust, 

generalizable, and interpretable solutions[15]. 

The significance of this research extends beyond traffic management into broader socio-

economic and environmental domains. Traffic congestion contributes to billions of dollars in 

economic losses annually due to wasted fuel, delayed deliveries, and reduced productivity. 

Additionally, it is a major contributor to environmental degradation, with idling vehicles 

releasing substantial amounts of carbon dioxide, nitrogen oxides, and particulate matter, which 

negatively affect air quality and public health. Furthermore, traffic-related injuries and fatalities 

represent a pressing social issue, with vulnerable populations such as the elderly and children 

being disproportionately affected[16]. By leveraging deep learning-based spatial-temporal 

analysis enhanced by agglomerative clustering, policymakers, urban planners, and transportation 

authorities can obtain actionable insights that help in designing safer roadways, implementing 
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effective traffic regulations, optimizing public transit systems, and promoting sustainable 

mobility solutions. The ability to cluster traffic data based on congestion severity, accident 

frequency, or demographic attributes enables targeted interventions that address specific problem 

areas, such as improving road safety for high-risk age groups or allocating infrastructure budgets 

based on traffic density patterns[17]. 

From a methodological perspective, the research involves the use of two datasets that represent 

real-world road traffic conditions, providing a foundation for empirical analysis. These datasets 

include structured data from roadway sensors, GPS-enabled vehicles, and surveillance systems, 

as well as unstructured data such as accident reports, traveler surveys, and social media feeds. 

The preprocessing stage involves cleaning and normalizing the data, handling missing values, 

and extracting relevant features that capture both spatial and temporal attributes of traffic flow. 

Agglomerative clustering is then applied to partition the datasets into clusters that reflect 

different traffic states, such as free-flow, moderate congestion, and severe congestion, with 

linkage criteria such as single linkage, complete linkage, or average linkage determining how 

clusters are merged[18][19]. The resulting hierarchical tree or dendrogram not only visualizes 

the nested structure of traffic data but also provides meaningful input features for deep learning 

models. These models, which may include LSTMs for temporal sequence prediction or CNNs 

for spatial feature extraction, are trained on clustered data to predict traffic conditions, detect 

anomalies such as sudden traffic spikes or accidents, and forecast congestion patterns. The 

experimental results demonstrate that this hybrid approach outperforms traditional models in 

terms of accuracy, precision, and computational efficiency[20] 

The motivation for this research lies in bridging the gap between existing traffic management 

systems and the need for more intelligent, adaptive, and scalable solutions. Traditional methods 

such as linear regression, autoregressive integrated moving average (ARIMA) models, or simple 

time-series analysis fail to capture the nonlinearities and complex interactions present in traffic 

data, leading to suboptimal predictions and ineffective congestion mitigation strategies. On the 

other hand, while deep learning models are powerful, they require well-structured data and can 

sometimes act as “black boxes,” limiting their interpretability. Agglomerative clustering helps 

mitigate these issues by structuring raw data into meaningful clusters, reducing noise, and 

enhancing feature representation, thereby improving both interpretability and performance. The 

research objectives therefore include: developing a hybrid analytical framework that integrates 

agglomerative clustering with deep learning; applying this framework to real-world datasets to 

analyze spatial-temporal traffic patterns; evaluating its effectiveness in forecasting congestion 

and detecting anomalies; and demonstrating its potential applications in intelligent transportation 

systems and smart cities. The contributions of this work can be summarized as the introduction 

of a novel hybrid approach for traffic analysis, the empirical validation of its effectiveness using 

diverse datasets, and the demonstration of its applicability in addressing real-world urban 

mobility challenge 
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Literature Review 

Author & Year 
Focus / 

Objective 

Methods / 

Models Used 
Dataset(s) 

Key Findings / 

Contributions 

ManikandanRajagopal 

et al. (2025) 

Scalable, real-

time traffic flow 

prediction for 

ITS 

MTH-QGNN, 

Hyperbolic 

embeddings, 

Meta-learning, 

QGNN, 

NODEs 

Los-loop, SZ-

taxi 

RMSE = 4.5, MAE 

= 3.5, Accuracy > 

80%, R² > 83% 

Mohammad Hassan 

MobiniSeraji et al. 

(2025) 

Driver behavior 

analysis, eco-

driving, energy 

forecasting 

Clustering 

(Fuzzy C-

means, K-

means, 

DBSCAN), 

Classification 

(ANN, KNN, 

SVM), Hybrid 

DL 

Heterogeneous 

driving data 

Real-time 

monitoring, 

personalized 

feedback, improved 

sustainability 

Jiahui Zhao et al. 

(2025) 

Crash severity 

prediction with 

spatiotemporal 

traffic states 

3D-CAE + K-

means, RE-

BNN, 

Integrated 

Gradients 

City-wide 

detector data 

Accuracy ↑ 14.01%, 

Precision ↑ 11.58%, 

Recall ↑ 12.50% 

JiajunShen et al. 

(2025) 

Dynamic lane 

configuration in 

mixed CAV & 

HV 

environments 

Genetic 

Algorithm + 

Deep 

Reinforcement 

Learning 

(DRL) 

Simulated urban 

intersection 

traffic 

Dedicated CAV 

lanes reduce delays; 

DRL improves 

speed & reduces 

wait time 

HanlinTian et al. 

(2025) 

Traffic risk 

prediction at 

intersections 

using spatial 

interactions 

Multimodal 

DL with Aerial 

imagery + 

Building 

footprints + 

Traffic flow, 

DeepLabV3+, 

UNet++, 

SegFormer 

OpenStreetMap, 

U.K. Traffic 

Count, Aerial 

imagery 

IoU = 0.4052, 

RMSE = 0.0907; 

multimodal data 

improves prediction 

Donghyun Park et al. 

(2025) 

Traffic anomaly 

detection in 

mixed AV & 

HV scenarios 

Graph Multi-

Resolution 

Transformer 

(GMRT) 

Autonomous 

Driving Demo 

Zone (Korea) 

Outperforms 

baselines in 

anomaly detection; 

lane-level accuracy 
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ChaimaaChaoura et 

al. (2025) 

Emergency 

response 

prioritization for 

severe accidents 

CNN-

BiLSTM-

Attention, RF-

RFE, SMOTE-

Tomek, SHAP 

Multi-source 

accident data 

(France) 

94.99% accuracy; 

SHAP ensures 

interpretability for 

ambulance dispatch 

AungMyoHtut et al. 

(2025) 

Adaptive 

wireless image 

sequence 

streaming for 

traffic 

monitoring 

Multi-agent 

Reinforcement 

Learning, 

Apache Kafka, 

Mininet-WiFi 

Emulated 

wireless mesh 

network 

Outperforms 

baseline by 3.98%–

31.55%; ensures 

fairness & 

scalability 

Haneul Park et al. 

(2025) 

Policy support 

for traffic crash 

countermeasures 

Deep Neural 

Network 

(DNN), Multi-

label 

classification, 

K-fold CV 

Crash databases 

Accuracy = 93%, 

strong 

precision/recall/F1; 

policy decision 

support 

Fukui Wu et al. 

(2025) 

Short-term 

traffic flow 

prediction with 

sensor networks 

YOLOv8, ML 

models (GBR, 

SVR, Hybrid 

GBR-SVR), 

DL baselines 

Real-time 

highway camera 

data 

Hybrid GBR-SVR 

superior; handles 

nonlinear patterns & 

improves 

generalization 

Dongfang Yang et al. 

(2023) 

Fast traffic flow 

forecasting in 

smart cities 

Graph 

Convolutional 

Network 

(GCN) 

Standard urban 

road datasets 

Captures implicit 

road graph relations; 

efficient for real-

time big data 

 

Based on the provided research summaries, several key research gaps emerge in the field of 

intelligent transportation systems (ITS) and traffic analysis. While current research is highly 

advanced, particularly in applying deep learning and other sophisticated models, there remains a 

need for more robust and holistic solutions. 

A primary gap lies in the real-world integration and scalability of models. Many studies, like 

those by ManikandanRajagopal et al. and Dongfang Yang et al., achieve impressive performance 

on standard datasets like Los-loop and SZ-taxi. However, a significant challenge is deploying 

these models for real-time, large-scale, and heterogeneous urban environments. This includes 

addressing the computational overhead and the ability of models to adapt to a wide range of 

traffic conditions, including unexpected events and anomalies in mixed autonomous and human-

driven vehicle (AV/HV) scenarios, as highlighted by Donghyun Park et al. 

Another notable gap is the lack of comprehensive, multi-modal data fusion and its impact on 

prediction. While some studies, such as HanlinTian et al., use multi-modal data like aerial 

imagery and building footprints, a broader and more systematic approach is needed to fully 

understand how different data sources (e.g., weather, public transit schedules, social events) 

interact with each other and influence traffic patterns. Current research often focuses on one or 

two data types, limiting the models' ability to provide truly holistic insights. 
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Furthermore, there is a gap in interpretable and explainable AI for traffic management. While the 

use of models like CNN-BiLSTM-Attention (ChaimaaChaoura et al.) and DNN (Haneul Park et 

al.) shows high accuracy, the "black box" nature of these models can be a barrier for real-world 

adoption by policymakers and traffic authorities. The use of methods like SHAP and Integrated 

Gradients is a step in the right direction, but more work is needed to develop models that are not 

only accurate but also provide clear, actionable, and justifiable insights, especially in critical 

applications like crash prediction and emergency response. 

Finally, while studies like JiajunShen et al. explore dynamic lane configurations in mixed 

AV/HV environments, there's a need for more research on the long-term behavioral and systemic 

impacts of these new technologies. This includes analyzing how driver behavior, as studied by 

Mohammad Hassan MobiniSeraji et al., evolves in response to new infrastructure and how 

models can be used to proactively manage these complex human-machine interactions to 

optimize traffic flow and safety. The transition from controlled simulations to real-world 

deployment for dynamic systems remains a significant research challenge. 

 

Traffic data properties  

In at most instances, traffic data consists of various features related to both spatial and temporal 

value-added information. The properties of data is categorized into three groups such as 

numbers, text and category. The numbers property illustrates the continuous-valued variables 

that describes a quantitative data values., where each numbered value describes anyone of the 

data objects featured specifically weight,speedetc[10]. In case of visualization, most of the traffic 

features are both time-dependent as well as time-oriented methods. The category propery 

illustrates the discrete set of values in variable that describes the status of data object. Vehicles 

type, its routes and events are examples of categorical properties. In visual display, the property 

is reduced in favour of color matching and its representation of value with color.The text 

property illustrates the number of words and linguistic informationthat represents more details of 

road traffic like motor-vehicles involved in an event,criss-cross points and other occurences[14]. 

 

Unsupervised Deep Learning On Spatial-Temporal Traffic Data Using Agglomerative 

Clustering 

The study of traffic systems has always represented a multidisciplinary challenge that involves 

transportation engineering, computer science, mathematics, and social sciences. Traffic flow, 

congestion patterns, and accident probabilities are inherently complex phenomena influenced by 

multiple factors such as road design, driver behavior, weather conditions, population density, and 

urban growth[15]. Traditional models, which relied on deterministic formulas and linear 

regressions, failed to capture the nonlinear, dynamic, and stochastic nature of traffic. With the 

advent of data-driven approaches, particularly machine learning and deep learning, researchers 

gained new tools to process massive datasets collected from road sensors, GPS devices, 

surveillance cameras, and mobile applications. Yet, most of these approaches were supervised in 

nature, requiring labeled data for training, which is not always available in real-world traffic 

systems. This is where unsupervised deep learning becomes essential. Unsupervised methods 

allow machines to learn the hidden structure and representation of traffic data without explicit 

labels, discovering patterns, anomalies, and groupings that can guide decision-making in 

intelligent transportation systems. Among the various unsupervised techniques, clustering is one 
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of the most effective approaches for traffic analysis because it enables grouping of traffic data 

into meaningful clusters that reflect different congestion levels, road usage patterns, and 

temporal fluctuations[18]. 

Agglomerative clustering, a type of hierarchical clustering, plays a particularly important role in 

traffic analysis. Unlike partition-based methods such as k-means, which require the number of 

clusters to be predefined, agglomerative clustering builds a hierarchy of clusters in a bottom-up 

fashion. Each data point starts as its own cluster, and pairs of clusters are iteratively merged 

based on similarity measures until all points belong to a single cluster or until a stopping 

criterion is reached[19]. This approach is especially powerful for spatial-temporal traffic data, 

where the number of traffic states may not be known in advance, and where clusters naturally 

form due to similarities in congestion levels, traffic volume, or travel speed. In deep learning, 

when traffic data is first transformed into latent representations through unsupervised models 

such as autoencoders or restricted Boltzmann machines, the application of agglomerative 

clustering on these feature embeddings enables a deeper discovery of hidden structures in the 

data. For instance, road segments with similar traffic fluctuations over time can be grouped 

together, or intersections with recurrent bottlenecks can be clustered to support targeted urban 

planning[6]. 

Spatial-temporal analysis forms the core of modern traffic research. The spatial dimension 

captures the location-based information—road segments, intersections, neighborhoods, and city 

layouts—while the temporal dimension captures dynamic changes in traffic flow over time, 

ranging from daily rush hours to long-term seasonal variations[10]. The fusion of these two 

dimensions introduces complexity that traditional statistical models struggle to handle. Deep 

learning models, particularly convolutional neural networks (CNNs) for capturing spatial 

correlations and recurrent neural networks (RNNs) or long short-term memory (LSTM) networks 

for modeling temporal dependencies, have shown promise in analyzing spatial-temporal traffic 

data. When these architectures are trained in an unsupervised fashion, they can generate feature 

representations that are robust to noise, adaptable to unseen conditions, and capable of 

generalizing across different cities or regions. Agglomerative clustering applied on these latent 

feature spaces organizes the learned patterns into hierarchical structures, enabling multi-level 

interpretation of traffic states, from fine-grained micro-patterns (e.g., a congested lane within an 

intersection) to macro-level trends (e.g., city-wide rush-hour bottlenecks). 

 

Hierarchical Agglomerative Clustering (HAC) 

Clustering is a fundamental unsupervised learning technique that aims to group a set of data 

points into clusters such that items within the same cluster are more similar to each other than to 

those in other clusters. Among the many clustering approaches, hierarchical clustering provides a 

flexible and interpretable framework because it produces a nested sequence of clusters that 

represent data organization at multiple levels of granularity. Hierarchical clustering can be 

broadly divided into two types: agglomerative (bottom-up) and divisive (top-down). In 

agglomerative clustering, which is the more widely used approach, the algorithm starts by 

considering each data point as its own individual cluster. Then, in a series of iterat ive steps, the 

two closest clusters are merged together based on a similarity or distance metric. This process 

continues until all points are merged into a single large cluster or until a predefined stopping 

criterion is reached[12]. The result of this procedure is a tree-like structure called a dendrogram, 
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which visually represents the merging process and allows the user to “cut” the tree at a desired 

level to obtain a chosen number of clusters. 

The theoretical foundation of agglomerative clustering lies in the choice of distance metric and 

linkage criterion. The distance metric defines how similarity is measured between data points 

and can include Euclidean distance, Manhattan distance, cosine similarity, or other domain-

specific measures[14]. Once distances between points are defined, the linkage criterion specifies 

how the distance between two clusters should be computed. Common linkage methods include 

single linkage, where the distance between two clusters is defined as the minimum distance 

between any pair of points from the two clusters; complete linkage, where the maximum distance 

is used; average linkage, which takes the mean of all pairwise distances; and Ward’s method, 

which minimizes the variance within each cluster after merging. The choice of linkage has a 

significant impact on the shape and structure of the resulting clusters. For example, single 

linkage tends to create elongated “chain-like” clusters, whereas complete linkage favors 

compact, spherical clusters. 

One of the main strengths of hierarchical agglomerative clustering is that it does not require the 

number of clusters to be specified in advance, unlike partitioning algorithms such as k-means. 

Instead, the dendrogram provides a full picture of how data can be grouped at different levels, 

giving researchers flexibility to decide on the most meaningful partitioning for their problem 

domain. Additionally, HAC is deterministic, meaning that for a given distance metric and 

linkage method, the output will always be the same, unlike stochastic clustering algorithms that 

may vary from run to run. This property makes it reliable for reproducible research[22]. 

Despite its advantages, hierarchical agglomerative clustering also faces limitations. Its 

computational complexity is relatively high, typically O(n² log n) for n data points, which makes 

it less suitable for very large datasets compared to more scalable algorithms. Moreover, once a 

merge decision is made, it cannot be undone, making the algorithm “greedy” and sometimes 

prone to suboptimal clustering outcomes. Nevertheless, HAC remains a powerful method, 

especially in domains where interpretability and hierarchical relationships among data are 

valuable, such as bioinformatics, document clustering, and traffic data analysis. 

Hierarchical agglomerative clustering provides a theoretically grounded and practically useful 

method for exploring the structure of datasets. By progressively merging the most similar 

clusters and representing the process through a dendrogram, it allows multi-level exploration of 

data patterns. Its flexibility in distance metrics and linkage criteria gives researchers control over 

the clustering process, while its interpretability makes it a preferred choice in many unsupervised 

learning applications. 
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Figure 1.Flowchart of Agglomerative Clustering Algorithm 

 

Optimum count of Clusters using Agglomerative Clustering 

Dendrogram Analysis  

The most intuitive method for agglomerative clustering is to inspect the dendrogram. This tree-

like diagram visually represents the merging of clusters. The vertical axis shows the distance or 

dissimilarity at which clusters are merged. To find the optimal number of clusters, you look for 

the longest vertical line that is not intersected by any horizontal line, indicating a significant 

jump in dissimilarity[1][4].  A horizontal cut through this jump reveals a good cluster count. For 

instance, a cut that intersects three vertical lines suggests three clusters. In the context of road 

traffic, these clusters might represent distinct patterns like "commuter rush hour," "midday off-

peak," and "weekend/late-night" traffic. 

Statistical Metrics  

For a more quantitative approach, various statistical metrics can be used to evaluate the quality 

of the clusters for different numbers of clusters. A common method is the Silhouette Score, 

which measures how similar an object is to its own cluster compared to other clusters. The score 

ranges from -1 to +1, with a higher value indicating better-defined clusters. You can run the 

clustering algorithm for a range of cluster counts (e.g., from 2 to 10) and plot the average 

Silhouette Score for each. The number of clusters that yields the highest score is often considered 

optimal. Another useful metric is the Calinski-Harabasz Index, which calculates the ratio of 

between-cluster variance to within-cluster variance. A higher index value corresponds to better-

separated, more compact clusters. 
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Domain Knowledge & Interpretation  

While statistical metrics provide a numerical guide, domain knowledge is crucial for validating 

the results. For road traffic, an "optimal" number of clusters should make practical sense. For 

example, if your statistical analysis suggests 11 clusters, but you can only meaningfully interpret 

three or four distinct traffic patterns (e.g., morning peak, evening peak, off-peak, and weekend), 

then a smaller number of clusters might be more useful for traffic management and urban 

planning. The chosen clusters should be actionable, allowing authorities to develop targeted 

strategies for different road segments or time periods. Ultimately, the best number of clusters is 

the one that is both statistically sound and provides valuable, interpretable insights for real-world 

applications. 

 

Results 

 

 
Figure 2.Traffic Congestion Heatmap 

The figure 2 shows a traffic congestion heatmap, a powerful data visualization tool designed to 

provide a comprehensive and intuitive overview of traffic conditions across a road network. Its 

fundamental principle relies on the simple yet effective use of a color spectrum to represent 

different states of traffic flow, translating raw data into an easily digestible visual format. At its 

core, the map assigns colors to roads based on metrics like average vehicle speed, traffic volume, 

or density, creating a visual gradient that reflects the level of congestion in real time. The warm 

end of this spectrum, typically featuring vibrant reds and deep oranges, signifies areas of severe 

congestion where vehicles are moving at a very slow pace or are completely gridlocked, 

identifying critical bottlenecks that impede smooth circulation. Moving along the spectrum, 

yellows represent slowing traffic with a moderate level of congestion, acting as a warning sign of 

potential buildup ahead. Conversely, the cool colors like green and blue are used to represent 

free-flowing traffic, indicating that vehicles are traveling at or near the posted speed limit 

without any significant delays. By overlaying this color data onto a geographical map, the 

heatmap instantly reveals the spatial distribution of traffic problems, allowing observers to 

pinpoint exact locations of distress. For urban planners and transportation authorities, this visual 

data is invaluable; it provides a clear basis for making informed decisions regarding 

infrastructure improvements, such as adding lanes or building bypasses, and for optimizing 

traffic signal timing to improve flow during peak hours. Furthermore, the heatmap can be used 



LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT 
ISSN:1581-5374 E-ISSN:1855-363X  
VOL. 23, NO. S3(2025)                 

 
 

57 
 

for dynamic analysis, tracking how congestion patterns evolve throughout the day, week, or in 

response to special events or accidents. This same technology also serves as the backbone for 

popular GPS navigation applications, empowering everyday commuters to make smart, real-time 

routing decisions to save time and reduce fuel consumption. Ultimately, the traffic congestion 

heatmap is an essential component of modern smart cities, offering a dual-purpose tool that aids 

high-level policy planning and practical, individual navigation, all within a single, compelling 

visual representation. 

 
Figure 3. Traffic Volume Heatmap 

The figure you have provided is a Traffic Volume Heatmap, specifically one that visualizes 

traffic volume derived from Call Detail Records, or CDRs. It employs a two-dimensional 

coordinate system, with x and y axes ranging from 0 to 100, which represents a specific 

geographical area. The core of this visualization is the color scale, shown on the left, which 

quantifies the "Traffic volume (CDRs)" from approximately 0 to 4000. This color bar translates a 

numerical value into a distinct color, with the darkest blues and purples representing the lowest 

traffic volume, while the brightest yellows and whites signify the highest concentrations of 

activity. The term "CDRs" refers to the data generated by mobile phone activity, where each call, 

text, or data session creates a record of a mobile device's location, making it an effective proxy 

for human mobility and, by extension, traffic flow.  

The heatmap reveals a highly concentrated hotspot in the center of the grid, indicated by the 

intense yellow and white pixels, suggesting a central business district or a major urban hub with 

a very high volume of mobile activity and thus, a high density of people. Surrounding this central 

point, the traffic volume gradually decreases, spreading outwards into less-dense areas depicted 

by the greens and blues. This pattern visually corresponds to the typical distribution of 

population and activity in a metropolitan area, where the core is most active and suburbs or less 

populated areas radiate outwards. By using this type of data, urban planners can gain a non-
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traditional yet highly effective understanding of population density and movement patterns. This 

information is crucial for identifying areas that are prone to congestion, guiding the development 

of public transportation networks, and strategically planning for road infrastructure to 

accommodate high-volume areas.  

The reliance on CDRs offers a scalable and cost-effective method to monitor mobility on a large 

scale, providing critical insights for managing urban environments and improving overall traffic 

efficiency. Therefore, the figure serves as a powerful analytical tool that visualizes urban 

mobility and helps in making data-driven decisions to mitigate congestion and enhance city 

living. 

 

 
Figure 4.Traffic Volume Prediction Comparison Plot 

 

The figure 4. provided is a Traffic Volume Prediction Comparison Plot, an advanced 

visualization used to evaluate and compare the performance of different predictive models. Its 

fundamental purpose is to demonstrate how accurately various machine learning algorithms can 

forecast future traffic volume based on historical data. Each of the three subplots within the 

figure shows a distinct traffic scenario over a seven-hour period. The horizontal x-axis uniformly 

represents time in hours, from zero to seven. The vertical y-axis, labeled "Traffic volume 

(CDRs)," quantifies the traffic volume using Call Detail Records as a proxy for human mobility. 

A crucial element in all three graphs is the vertical dotted line, which marks the "prediction start" 

at the two-hour mark. This line delineates the historical data from the future predictions. Before 

this dotted line, all the colored lines, including the blue line representing "ground truth," 

perfectly overlap. This is because all models are provided with the same real, observed traffic 

data for their initial training. However, after the prediction start at the two-hour mark, the 

behavior of the lines changes dramatically. The black line continues to track the "ground truth," 

which is the actual traffic volume that occurred after the models began their forecasts. The other 
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colored lines, labeled in the legend with names like "CNN-ConvLSTM," "seq2seq ConvLSTM," 

and "PredRNN++," diverge from the ground truth.  

Each of these lines represents a different deep learning model's attempt to predict what the traffic 

volume would be in the future. The primary objective of the visualization is to determine which 

of these models provides the most accurate forecast. One can easily gauge a model's performance 

by observing how closely its colored line follows the ground truth line after the two-hour mark. 

A model whose prediction line stays very close to the black ground truth line is considered 

highly accurate. Conversely, models whose lines deviate significantly from the ground truth are 

less effective at forecasting. By presenting multiple models side-by-side, the plot offers a clear 

visual comparison of their respective strengths and weaknesses under different traffic conditions. 

This type of analysis is vital for researchers and engineers who are developing intelligent 

transportation systems. Ultimately, this figure serves as a vital tool for selecting the optimal 

predictive model for real-world applications, ensuring that traffic management and urban 

planning can be guided by the most reliable future predictions. 

 

 
Figure 5. Comprehensive Traffic Volume Prediction Comparison Grid, 

The figure 5.presented is a Comprehensive Traffic Volume Prediction Comparison Grid, a 

sophisticated visualization designed to systematically evaluate the forecasting accuracy of 

multiple machine learning models. This grid consists of six separate plots, each representing a 

distinct traffic volume dataset over a seven-hour period. The x-axis across all plots consistently 

represents time in hours, while the y-axis quantifies the traffic volume, a metric derived from 

anonymized Call Detail Records, or CDRs. Within each subplot, the solid blue line with data 

points represents the "ground truth," which is the actual, observed traffic volume over the entire 

time span. A critical element is the vertical dotted line at the two-hour mark, labeled "prediction 

start." Before this line, all the colored lines perfectly align with the ground truth, as they are 

being fed the same historical data. After this point, the various colored lines, identified in the 

legend by names like "CNN-ConvLSTM" and "PredRNN++," diverge from the ground truth. 

Each of these diverging lines represents a different model's attempt to predict future traffic 

volume based on the initial two hours of data. The primary purpose of this grid is to visually 

compare how well each model's prediction holds up against the actual outcome. A model is 
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considered more accurate if its prediction line stays close to the ground truth line after the two-

hour mark. The presence of six different plots allows for a robust evaluation of the models' 

performance under a variety of traffic conditions and patterns. This provides a comprehensive 

view of which model is most reliable across diverse scenarios. The figure ultimately serves as a 

powerful analytical tool for researchers and engineers. It enables them to identify the most robust 

and dependable predictive model for real-world applications in traffic management and urban 

planning. 

 

This Figure 5compares the predictive accuracy of several machine learning models in forecasting 

traffic volume. The vertical dashed line in each plot marks the point where historical data ends 

and the models' predictions begin. Model performance is evaluated by how closely a model's 

forecast line aligns with the actual "ground truth" line after this point. The grid of six plots 

demonstrates how these models perform under different traffic conditions and scenarios 

 

Conclusion 

The overall approach represents a synergistic integration of clustering and deep learning. 

Agglomerative clustering, as an unsupervised learning technique, can first be applied to large 

datasets to identify natural groupings and patterns in traffic data, which can then be used to 

improve the performance of deep learning models. For instance, models could be trained on 

clusters of similar road types or time periods. The deep learning models, in turn, are used for the 

predictive task, leveraging their ability to learn intricate spatial and temporal features.The models 

are trained on historical data, and their accuracy is determined by how closely their forecast lines 

match the "ground truth" data after a specific prediction start time. The plots confirm that a select 

number of models, such as the CNN-ConvLSTM, are able to achieve high accuracy in 

forecasting, indicating their effectiveness in capturing and understanding the complex temporal 

patterns of traffic.By first using agglomerative clustering to organize data and then feeding that 

structured information to powerful deep learning models, it is possible to not only understand 

existing traffic patterns but also to make highly accurate predictions, ultimately supporting more 

effective urban planning and traffic management. 
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