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Abstract 

Economic forecasting increasingly operates at the intersection of econometric discipline and artificial intelligence driven 

flexibility. While traditional econometric models provide interpretability and theoretical consistency, they often struggle 

to capture nonlinear and structurally evolving dynamics. Conversely, AI-based forecasting models offer adaptive pattern 

recognition capabilities but raise concerns regarding interpretability and structural coherence. This study proposes a 

dynamic hybrid conceptual framework that integrates econometric and AI-based components within a forecast-horizon-

conditioned structure. Unlike conventional hybrid models that rely on static residual modeling or simple forecast 

averaging, the proposed approach introduces dynamic weighting mechanisms that adjust according to forecast horizon, 

thereby structurally balancing linear and nonlinear components. 

The framework preserves econometric interpretability in the short run while augmenting predictive flexibility in medium- 

and long-term horizons. To illustrate its internal logic and stability properties, a conceptual Monte Carlo-based validation 
is presented under stylized theoretical conditions. The study contributes to the forecasting literature by reframing 

hybridization as a structurally grounded integration process rather than a mechanical ensemble method, and by explicitly 

incorporating forecast horizon as a central determinant of model architecture. 
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1. Introduction 

Economic forecasting remains one of the most consequential and contested domains within applied 

economics. Governments rely on forecasts to design fiscal and monetary strategies; financial 

institutions depend on them to price risk; energy markets respond to expectations embedded in 

predictive models. Yet despite decades of methodological development, forecasting performance 

remains uneven particularly under structural shifts, nonlinear dynamics, and horizon expansion. 

Traditional econometric models have long constituted the backbone of economic forecasting. 

Frameworks such as ARIMA, VAR, and cointegration-based models provide statistical discipline, 

interpretability, and theoretical consistency. Their strength lies in their structural transparency: 

parameters can be interpreted, hypotheses can be tested, and policy implications can be derived within 

a coherent economic logic. However, these models rest on assumptions of linearity, parameter 

stability, and distributional regularity that may not hold in complex macroeconomic environments. 

In contrast, artificial intelligence based models including artificial neural networks (ANN), support 

vector regression (SVR), and deep learning architectures offer a fundamentally different modeling 

philosophy. Rather than imposing a functional structure derived from economic theory, they learn 

patterns directly from data. This data-driven flexibility enables them to capture nonlinear interactions 

and hidden dynamics often missed by conventional econometric approaches. Nonetheless, their 

predictive strength is frequently accompanied by interpretability limitations, sensitivity to data 

quality, and the well-known “black box” concern. 
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The growing divergence between interpretability and predictive flexibility has led to the emergence 

of hybrid forecasting models. Existing hybrid approaches typically combine econometric and AI-

based models either sequentially by modeling residuals or through forecast averaging schemes. While 

such strategies often improve short-term predictive accuracy, much of the literature treats 

hybridization as a mechanical combination rather than a structurally grounded integration. Moreover, 

the majority of hybrid studies do not explicitly incorporate forecast horizon as a determinant of model 

weighting or structural balance. 

This paper argues that the core challenge in economic forecasting is not the selection of a universally 

superior model, but rather the structural misalignment between model architecture, data properties, 

and forecast horizon. Building on this premise, the study proposes a dynamic hybrid conceptual 

framework that integrates econometric and AI-based components within a horizon-conditioned 

structure. Instead of assuming fixed weights or static residual modeling, the proposed approach 

introduces forecast-horizon-dependent weighting mechanisms designed to adaptively balance linear 

and nonlinear components. 

Formally, the proposed framework conceptualizes the economic time series as a composite of linear 

and nonlinear structures whose relative contribution varies with the forecast horizon. The econometric 

core preserves interpretability and short-term stability, while the AI augmentation captures nonlinear 

residual dynamics. A dynamic weighting mechanism governs the integration process, ensuring 

structural coherence without sacrificing predictive adaptability. 

Given data and some constraints, the study does not claim full empirical validation. Instead, it 

provides a structured conceptual Monte Carlo based illustration to demonstrate the expected behavior 

of the proposed framework under stylized theoretical conditions. This conceptual validation is 

intended to clarify the model’s internal logic and stability properties, rather than to offer empirical 

performance claims. 

The contribution of this paper is fourfold. First, it introduces horizon-conditioned hybridization as a 

structural principle rather than a statistical afterthought. Second, it preserves econometric 

interpretability while incorporating nonlinear learning mechanisms. 

Third, it proposes a diagnostically informed integration process that reduces arbitrary model 

combination. Fourth, it offers a theoretically grounded validation framework to support 

methodological transparency. 

By repositioning hybrid forecasting as a structurally coherent integration rather than a mechanical 

ensemble, this study contributes to the ongoing methodological dialogue between econometrics and 

artificial intelligence in economic analysis. 

1. Research Problem 

Despite substantial methodological progress in both econometrics and artificial intelligence, 

economic forecasting remains structurally fragmented. Traditional econometric models offer 

interpretability and theoretical grounding but struggle under nonlinear dynamics and structural 

breaks. Conversely, AI-based models provide superior nonlinear pattern recognition yet often lack 

interpretability and economic coherence. 

The core research problem addressed in this study can therefore be formulated as follows: 

How can econometric structure and artificial intelligence flexibility be integrated within a 

theoretically coherent hybrid framework that dynamically adapts to forecast horizon without 

sacrificing interpretability or predictive stability? 

This problem reflects three intertwined challenges: 

 The interpretability accuracy trade-off 

 Structural instability across forecast horizons 

 The absence of horizon-conditioned hybrid architectures 
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Rather than asking which model performs better, this study addresses the structural design of 

integration itself. 

2. Sub-Research Questions 

From the central problem, three sub-questions emerge: 

RQ1. To what extent does forecast horizon alter the relative predictive contribution of linear 

(econometric) and nonlinear (AI-based) components? 

RQ2. Can a dynamic weighting mechanism improve structural coherence compared to static 

hybridization schemes? 

RQ3. Does horizon-conditioned hybridization conceptually reduce forecast instability under 

nonlinear data-generating processes? 

These questions shift the focus from model comparison to structural integration dynamics. 

3. Research Hypotheses 

The study advances three theoretically grounded hypotheses: 

H1: The relative predictive contribution of nonlinear components increases as forecast horizon 

expands. 

H2: Dynamic weighting mechanisms yield greater structural stability than fixed-weight hybrid 

combinations. 

H3: A horizon-conditioned hybrid framework conceptually reduces forecast variance under nonlinear 

simulated environments compared to isolated econometric or AI models. 

These hypotheses are conceptual and illustrated through structured Monte Carlo simulation rather 

than empirical claim. 

 

2. Literature Review: From Linear Dominance to Structural Hybridization 

 

 

 

Title of Study Model Used Main Findings 
Methodological 

Limitations 

What Our Study 

Adds 

The Combination of Forecasts 
Linear 

forecast 

combination 

Combined 

forecasts 

outperform 

single models 

Static weights; no 

structural dynamics 

Introduces dynamic 

horizon-dependent 

weighting 

 

Bates & Granger (1969) 

Time Series Forecasting Using a 

Hybrid ARIMA and Neural 

Network Model 

ARIMA + 

ANN 

Hybrid improves 

nonlinear 

forecasting 

accuracy 

Fixed architecture; 

no macro foundation 

Adds econometric 

anchoring and 

adaptive weights 
Zhang (2003) 

A Hybrid ARIMA and Support 

Vector Machines Model ARIMA + 

SVR 

Strong 

performance in 

financial series 

Limited 

interpretability; 

finance-focused 

Extends framework 

to macroeconomic 

variables 

 

Pai & Lin (2005) 

Statistical and Machine 

Learning Forecasting Methods 
Statistical vs 

ML models 

ML strong short-

term; mixed 

long-term results 

No integration 

structure proposed 

Provides structured 

econometric–AI 

integration logic Makridakis et al. (2018) 

Modeling Long- and Short-Term 

Temporal Patterns with Deep 

Neural Networks 
LSTM 

Captures long 

memory and 

nonlinear 

dynamics 

High data 

requirements; black-

box nature 

Embeds LSTM 

within economically 

disciplined hybrid 

architecture Lai et al. (2018) 

Forecasting Inflation in a Data-

Rich Environment Using 

Machine Learning Methods 

LASSO, 

Random 

Forest, 

Boosting 

ML improves 

inflation 

forecasting in 

high-

dimensional 

settings 

Weak theoretical 

interpretability; no 

hybrid 

decomposition 

Introduces functional 

decomposition + AI 

augmentation within 

dynamic econometric 

core 

Medeiros et al. (2021) 
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2.1 The Linear Paradigm and the Birth of Forecast Combination 

Modern forecasting theory initially evolved within a linear econometric paradigm. Early 

contributions were grounded in the assumption that economic relationships could be approximated 

through stable parametric structures. Within this tradition, the seminal work of Bates and Granger 

(1969) introduced a conceptual breakthrough: rather than selecting a single “best” model, forecasts 

from multiple models could be combined to reduce mean squared prediction error. 

This idea marked a subtle but profound epistemological shift. Forecasting ceased to be a problem of 

model supremacy and became a problem of model complementarity. Yet, the combination framework 

remained statistically mechanical. Weights were derived from past error covariance structures and 

assumed to be constant over time. The approach did not account for nonlinearities, structural breaks, 

or horizon-specific dynamics features that characterize real-world macroeconomic data. 

Thus, while foundational, linear forecast combination operated within a static universe. 

2.2  Hybridization as Error Decomposition: ARIMA-ANN and ARIMA-SVR 

The next intellectual transition emerged with the recognition that economic time series often exhibit 

nonlinear patterns that linear structures cannot capture. Zhang (2003) formalized this intuition by 

proposing an ARIMA-ANN hybrid model, decomposing a time series into a linear component 

handled by ARIMA and a nonlinear component modeled through neural networks. 

The conceptual contribution was significant: nonlinearity was no longer treated as noise but as 

structured residual information. However, this hybridization remained sequential and rigid. 

 The linear model was estimated first, and the neural network merely corrected residuals. 

 There was no endogenous mechanism determining the relative contribution of each model across 

forecast horizons. 

Pai and Lin (2005) extended this architecture by replacing ANN with Support Vector Regression 

(SVR), improving generalization properties in smaller samples. Yet again, hybridization remained 

procedural rather than structural. No theoretical integration guided model interaction; instead, 

empirical performance dictated model selection. 

These studies demonstrated that hybridization improves accuracy but they did not redefine the logic 

of integration. 

2.3  Machine Learning as Substitution Rather than Integration 

A more radical shift occurred with the rise of machine learning methods applied directly to 

macroeconomic forecasting. The large-scale evidence from the M4 competition (Makridakis et al., 

2018) revealed that machine learning models often outperform traditional statistical models in short-

horizon forecasting tasks. However, the study also highlighted an uncomfortable truth: statistical 

models remain competitive, and sometimes superior, in stable environments. 

This finding challenges the narrative of technological displacement. Machine learning does not 

universally dominate econometric models; its superiority is conditional. 

Similarly, Medeiros et al. (2021) demonstrated that high-dimensional machine learning techniques 

(LASSO, Random Forests, Boosting) enhance inflation forecasting in data-rich environments. Their 

results confirmed the predictive gains of flexible learners. Yet the approach largely replaced rather 

than integrated econometric structures. Interpretability was secondary to predictive performance. 

In both cases, the dominant research question became: Which method performs better? 

The deeper question How should methods be structurally organized? remained largely unexplored. 

2.4 Deep Learning and Temporal Memory: Power Without Structure 

Deep learning architectures, particularly LSTM networks (Hochreiter & Schmidhuber, 1997), 

introduced the ability to model long memory and nonlinear dynamic dependencies. 

 Applications such as Lai et al. (2018) demonstrated remarkable predictive power in complex time 

series settings. 

Yet, deep models amplify a central tension in economic forecasting: predictive strength versus 

structural interpretability. In policy-relevant contexts such as inflation or GDP forecasting opacity 
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poses methodological risks. Forecasting is not merely an engineering task; it is a decision-support 

system embedded in institutional accountability. 

Thus, while deep learning extends temporal representation capacity, it does not inherently solve the 

integration dilemma between structure and flexibility. 

2.5  Synthesis: Three Paradigms, One Missing Architecture 

The literature can therefore be organized into three paradigms: 

 Linear dominance and static combination (Bates & Granger, 1969). 

 Sequential hybrid correction models (Zhang, 2003; Pai & Lin, 2005). 

 Machine learning substitution frameworks (Makridakis et al., 2018; Medeiros et al., 2021). 

Each paradigm advances forecasting accuracy. None, however, fully resolves the structural 

integration problem. 

Specifically, four gaps persist: 

 Lack of horizon-dependent weighting mechanisms. 

 Absence of an economically anchored hybrid structure. 

 Limited consideration of dynamic model complementarity. 

 Insufficient reconciliation between interpretability and nonlinear adaptability. 

In short, the field has moved from model rivalry to model coexistence but not yet to structured 

methodological orchestration. 

2.6 Intellectual Positioning of the Present Study 

The present study enters this debate not by proposing yet another hybrid variant, but by formalizing 

a horizon-dependent structural hybrid architecture. 

Rather than: 

 Combining forecasts mechanically, 

 Correcting residuals sequentially, or 

 Replacing econometric models with machine learning, 

This study proposes a functionally organized system in which: 

An econometric core preserves theoretical coherence and statistical discipline. 

An AI augmentation layer captures nonlinear residual complexity. 

A dynamic weighting scheme adjusts model contributions according to forecast horizon. 

This design reframes hybridization from a technical trick to a methodological principle. 

The contribution is therefore not incremental but architectural: 

It provides a structured logic for integrating econometrics and artificial intelligence within a unified 

forecasting system. 

3 Theoretical Foundations of Economic Forecasting 

Economic forecasting is widely regarded as one of the most essential analytical tools supporting 

economic policy formulation and decision-making at both macroeconomic and microeconomic 

levels. It enables policymakers and economic agents to anticipate future trajectories of economic 

variables within an environment increasingly characterized by uncertainty and structural complexity. 

The evolution of forecasting models from traditional econometric approaches to intelligent and hybrid 

models cannot be fully understood without revisiting the theoretical foundations that have shaped this 

field of knowledge. Economic forecasting is not merely a statistical exercise; rather, it is the outcome 

of a profound interaction between economic theory, econometrics, and advances in quantitative 

analytical tools. 

3.1 Economic Forecasting as a Decision Making Tool and a Means of Reducing Uncertainty 

Economic forecasting is grounded in the fundamental assumption that economic behavior, despite its 

inherent complexity, exhibits certain regular patterns that can be identified and analyzed. The core 

function of forecasting lies in reducing the degree of uncertainty surrounding economic decisions, 

whether related to fiscal and monetary policies or to investment and production choices. Forecasting 



 LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT        
ISSN:1581-5374 E-ISSN:1855-363X        
VOL. 24, NO. 1(2026) 

 

427 
 

does not aim to “predict the future” in an absolute sense, but rather to estimate expected values of 

economic variables based on the information available at a given point in time. 

Granger (1969) emphasized that the value of a forecasting model does not lie in its absolute accuracy, 

but in its ability to improve decision-making outcomes relative to a situation in which no forecast is 

available. Accordingly, forecasting is viewed as a functional tool whose quality is assessed by its 

capacity to reduce forecast errors and enhance the effectiveness of economic decisions. 

3.2 The Econometric Logic of Forecasting Model Construction 

Econometrics constitutes the traditional methodological framework upon which most economic 

forecasting models have been built. This framework integrates economic theory, statistics, and 

mathematics in order to describe and quantitatively estimate relationships among economic variables. 

Traditional econometric models have typically relied on a set of core assumptions, most notably 

linearity, parameter stability, and the stationarity of time series. 

Within this context, time series models represent the cornerstone of economic forecasting. Economic 

variables are treated as functions of their past values and stochastic error terms.  

The general time series representation can be expressed as follows: 

 

 

 denotes the variable to be forecasted and  represents the random error term. 

The seminal contribution of Box and Jenkins (1976) established a systematic and rigorous 

methodology for forecasting through ARIMA models, which remain among the most widely applied 

tools in economic analysis. 

3.3  Linear Models and Their Methodological Limitations 

Traditional econometric models are fundamentally based on the assumption of linearity, meaning that 

relationships between variables can be represented through linear functional forms. For instance, the 

autoregressive model of order ( p ), denoted AR ( p ), is expressed as: 

 
Despite their interpretative clarity and strong economic intuition, the effectiveness of linear models 

becomes limited in the presence of: 

 Nonlinear relationships 

 Structural breaks 

 Changes in economic agents’ behavior 

 Long-memory dynamics in time series 

Numerous empirical studies have demonstrated that reliance on linear models alone leads to weak 

forecasting performance, particularly during periods of heightened economic instability (Stock & 

Watson, 2001). 

3.4  The Shift Toward Greater Flexibility: The Crisis of Linear Interpretation 

Recurring economic crises such as financial crises and episodes of extreme market volatility have 

raised serious doubts about the ability of traditional econometric models to capture the growing 

complexity of modern economies. It has become increasingly evident that economic relationships are 

not stable over time and that economic dynamics are influenced by psychological, institutional, and 

technological factors that cannot be adequately accommodated within a rigid linear framework. 

This context has stimulated the search for more flexible modeling approaches capable of: 

 Capturing nonlinear patterns 

 Handling complex interactions 

 Adapting to structural changes 
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These developments paved the way for the growing integration of artificial intelligence techniques 

into the field of economic forecasting. 

3.5 Artificial Intelligence as a Methodological Extension of Econometrics 

The incorporation of artificial intelligence into economic forecasting does not represent a 

paradigmatic rupture with econometrics; rather, it is best understood as a methodological extension 

aimed at overcoming some of the restrictive assumptions of traditional models.  

Artificial intelligence models rely on a fundamentally different logic, one that emphasizes learning 

from data instead of imposing a predefined functional form on economic relationships. 

Artificial neural networks (ANN), for example, model the relationship between inputs and outputs 

through multilayer structures that can be mathematically represented as: 

 
 where: 

 denotes the input variables 

 and are the network weights 

 represents the activation function 

This formulation highlights the capacity of intelligent models to approximate highly complex 

nonlinear relationships without requiring strong a priori assumptions regarding the underlying 

economic structure. 

3.6 Interpretability Challenges and the Limits of Intelligent Models 

Despite the strong forecasting performance demonstrated by artificial intelligence models in 

numerous economic applications, they face several methodological criticisms, most notably: 

 Weak economic interpretability (the “black box” problem) 

 High dependence on data volume and quality 

 Risk of overfitting 

Zhang et al. (1998) cautioned that superior predictive accuracy does not necessarily imply theoretical 

superiority, underscoring the need for cautious and well-structured integration of intelligent models 

within an explicit analytical framework. 

3.7 Toward an Integrative Approach to Economic Forecasting 

The theoretical review of economic forecasting foundations reveals that each methodological school 

traditional or intelligent possesses distinct strengths as well as clear limitations. Traditional 

econometric models offer interpretability and statistical discipline, whereas intelligent models excel 

in handling nonlinearity and complexity. This methodological complementarity underscores the need 

for an integrative approach that combines both paradigms, thereby providing a logical transition 

toward hybrid forecasting models, which constitute the central focus of this paper. 

4 Traditional Econometric Forecasting Models 

Traditional econometric models constitute the historical and methodological foundation of economic 

forecasting. Their development has been closely associated with the emergence of econometrics as 

an independent scientific discipline aimed at translating theoretical economic relationships into 

mathematical formulations that are estimable and empirically verifiable. These models have played a 

central role in the analysis of economic time series, particularly in contexts characterized by limited 

data availability and complex economic dynamics. They have provided well-structured 

methodological tools that enable the interpretation of the dynamic behavior of economic variables 

and the forecasting of their future trajectories. 
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4.1 The General Logic of Traditional Econometric Models 

Traditional econometric models are built upon the assumption that economic behavior, despite its 

fluctuations, follows an underlying regular structure that can be represented through relatively stable 

mathematical relationships. These models typically assume that relationships among variables are: 

 Linear or transformable into linear forms 

 Stable over time 

 Statistically testable 

Within this framework, forecasting is viewed as a natural extension of the estimation process, 

whereby estimated parameter values are employed to project future values of the dependent variable. 

4.2 Autoregressive and Moving Average Models (ARMA / ARIMA) 

Box–Jenkins models are among the most widely used approaches for forecasting economic time 

series due to their relative simplicity and practical effectiveness. The autoregressive model of order 

(p), denoted AR (p), is based on the premise that the current value of an economic variable depends 

on its past values and is expressed as: 

 
 The moving average model of order (q), MA (q), represents the current value as a function of past 

error terms: 

 
Combining these two structures yields the ARMA (p,q) model. When dealing with non-stationary 

time series, the ARIMA (p,d,q) model incorporates differencing to achieve stationarity: 

 

 
  

where ( L ) denotes the lag operator. 

Despite their widespread application, the effectiveness of these models remains conditional upon the 

stationarity assumption and their limited ability to capture nonlinear relationships, which constitutes 

one of their principal methodological constraints. 

4.3 Exponential Smoothing Models 

Exponential smoothing models are extensively used for short-term forecasting, particularly in applied 

contexts requiring rapid responsiveness to recent changes in time series data. Simple exponential 

smoothing is defined as: 

 

 
 

where  is the smoothing parameter, bounded between 0 and 1. 

These models have been further developed to incorporate trend and seasonality components, as in the 

Holt Winters framework, thereby enhancing their forecasting performance in certain settings. 

However, despite their practical efficiency, exponential smoothing models lack a strong explicit 

economic theoretical foundation and remain unable to adequately address structural shocks or abrupt 

changes in economic behavior. 

4.4 Vector Autoregression Models (VAR) and Multivariate Forecasting 

The introduction of vector autoregression (VAR) models represented a significant advancement in 

economic forecasting by enabling the joint modeling of multiple endogenous variables within a 

unified dynamic framework, without imposing strict theoretical restrictions.  
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A VAR model of order ( p ) can be expressed as: 

 

 
 

where  denotes a vector of economic variables. 

VAR models are valued for their flexibility and their capacity to capture dynamic interactions among 

variables. Nevertheless, they face two major limitations: 

Parameter proliferation as the number of variables increases 

Reduced forecasting accuracy in the presence of strong nonlinearities 

Moreover, the economic interpretation of results becomes increasingly complex as model 

dimensionality expands. 

4.5 Cointegration and Error Correction Models (VECM) 

When time series are non-stationary but integrated of the same order, cointegration models provide a 

suitable framework for forecasting while preserving long-run equilibrium relationships. The vector 

error correction model (VECM) can be represented as: 

 

 

where the matrix  captures long-run equilibrium relationships among the variables. 

While these models are theoretically robust and economically interpretable, their ability to capture 

sudden structural changes and complex nonlinear dynamics remains limited. 

4.6 Critical Assessment of the Forecasting Performance of Traditional Models 

A substantial body of empirical literature indicates that traditional econometric models perform well 

in relatively stable economic environments, where linear relationships prevail and economic behavior 

exhibits a degree of regularity. However, their performance deteriorates markedly in the presence of: 

 Economic crises 

 High volatility 

 Unanticipated behavioral shifts 

Stock and Watson (2001) demonstrated that linear models frequently fail to generate accurate 

forecasts during periods of economic instability, thereby limiting their effectiveness as 

comprehensive forecasting tools. 

4.7 Limitations of Traditional Econometric Models and Prospects for Advancement 

The principal limitations of traditional econometric models can be summarized as follows: 

 The assumption of linearity and parameter stability 

 Limited capacity to capture nonlinear dynamics 

 High sensitivity to structural shocks 

 Strong dependence on restrictive statistical assumptions 

These limitations do not imply the failure of traditional models, but rather highlight the need for more 

flexible approaches that leverage data driven learning mechanisms. This realization provides a natural 

transition toward intelligent forecasting models. 

5 Intelligent Forecasting Models 

The growing complexity of economic phenomena and the accelerating pace of structural 

transformations have generated an increasing demand for forecasting models that are more flexible 

and capable of capturing nonlinearity and complex interactions among variables. 

Within this context, artificial intelligence based models have emerged as a new methodological 

direction in economic forecasting not as a complete substitute for traditional econometrics, but rather 
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as complementary analytical tools designed to overcome some of its structural limitations. This shift 

is grounded in a fundamentally different modeling logic, one that relies on learning from data rather 

than imposing predefined functional forms on economic relationships. 

5.1 Conceptual Foundations of Intelligent Forecasting Models 

Intelligent forecasting models differ from traditional econometric models in their methodological 

starting points. Instead of relying on explicit   assumptions regarding the nature of relationships 

among variables, they are based on learning algorithms capable of extracting latent patterns directly 

from data. In this framework, forecasting is treated as an optimization problem, where the objective 

is to identify the model that minimizes a predefined loss function, such as the mean squared error 

(MSE): 

 

 

where  denotes the set of parameters of the intelligent model. 

This methodological shift reflects a transition from an emphasis on economic interpretation toward a 

focus on predictive accuracy, giving rise to an extensive debate regarding the role of economic theory 

in the era of artificial intelligence. 

5.2 Artificial Neural Networks (ANN) 

Artificial neural networks are among the most widely applied artificial intelligence models in 

economic forecasting due to their strong ability to represent complex nonlinear relationships. These 

models are inspired by simplified representations of the human brain, consisting of interconnected 

layers of processing units (neurons). 

A general representation of a multilayer neural network can be expressed as: 

 

 
 

where: 

 represents the explanatory variables 

 and  denote the connection weights 

 is the activation function 

(H) is the number of hidden-layer neurons 

The principal strength of neural networks lies in their ability to capture nonlinear dynamics without 

requiring prior specification of the functional form. However, this flexibility comes at the cost of 

economic interpretability, as it becomes difficult to associate estimated weights with clear economic 

meanings. 

 

5.3 Support Vector Regression (SVR) 

Support vector regression models constitute a powerful class of intelligent forecasting tools, 

particularly suitable for situations characterized by relatively limited data availability. SVR is based 

on the idea of identifying a predictive function that minimizes forecasting errors within a predefined 

margin  The optimization problem can be expressed as: 
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subject to: 

 

 
  

SVR models offer a favorable balance between model complexity and predictive accuracy. 

Nevertheless, their performance depends critically on the choice of kernel function and hyper 

parameters, which requires careful methodological consideration when applied in an economic 

context. 

5.4 Deep Learning Models and Time Series Forecasting (LSTM) 

With the advancement of deep learning techniques, Long Short-Term Memory (LSTM) models have 

emerged as effective tools for forecasting economic time series, particularly those characterized by 

long memory and complex temporal dependencies. These models are designed to retain information 

over extended time horizons, making them well suited for dynamic economic data. 

The core LSTM cell can be represented by the following equations: 

 

 
 

 
 

 
 

 
 

These equations describe the mechanisms governing information retention and updating within the 

memory cell. Despite their strong forecasting performance, LSTM models suffer from severe 

limitations in economic interpretability and impose substantial requirements in terms of data volume 

and computational resources. 

5.5 Forecasting Performance of Intelligent Models 

A broad range of empirical studies has demonstrated that intelligent forecasting models often 

outperform traditional econometric models in environments characterized by strong nonlinearity and 

structural instability. However, this superiority is not unconditional and depends on several factors, 

including: 

 Data quality 

 Sample size 

 Forecast horizon 

Moreover, short-term forecasting superiority does not necessarily translate into long-term dominance, 

particularly in the presence of sudden structural changes. 

5.6 Methodological Challenges of Intelligent Models 

Despite their considerable potential, artificial intelligence–based models face several fundamental 

methodological challenges, most notably: 

 The black box problem 

 Weak economic interpretability 

 The risk of overfitting 

 Difficulties in incorporating theoretical economic knowledge 
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Makridakis et al. (2018) argue that predictive accuracy alone should not serve as the sole criterion for 

model evaluation; interpretability and methodological stability must also be taken into account. 

5.7 Artificial Intelligence and Econometrics: Complementarity or Competition? 

A comparative assessment of intelligent and traditional econometric models reveals that their 

relationship is one of complementarity rather than substitution. Intelligent models excel at capturing 

nonlinearity and complexity, whereas econometric models retain a comparative advantage in 

interpretability and methodological discipline. This complementarity has fueled growing interest in 

hybrid forecasting models, which aim to combine predictive accuracy with economic interpretability 

thereby providing a logical transition to the next section of this paper. 

6. Theoretical Properties and Optimal Horizon-Dependent Weight Derivation 

This section formalizes the theoretical foundations of the proposed hybrid forecasting architecture by 

deriving the optimal horizon-dependent combination weights and establishing the structural 

properties of the model. Unlike heuristic hybrid schemes, the proposed framework is grounded in an 

explicit risk minimization principle. 

6.1 Orthogonal Component Representation 

Assume that the economic time series admits an additive structural representation: 

 

    (18) 

 

where: 

( ) denotes the economically interpretable linear component, 

 captures nonlinear dynamics. 

To ensure identifiability and statistical coherence, we assume orthogonality: 

 

 
This orthogonal decomposition guarantees that the nonlinear augmentation does not replicate the 

information already captured by the econometric core, thereby preserving interpretability while 

allowing structural enrichment. 

6.2 Horizon-Specific Risk Minimization 

Let (H) denote the forecasting horizon. Define the component forecasts: 

 

 
The combined forecast is defined as: 

 

      (19) 

 

Let the forecast errors be: 

      (20) 

  

    (21) 

 

The combined error is: 

 

      (22) 

 

The horizon-specific quadratic risk is: 
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      (23) 

Expanding: 

 

        (24) 

 

where: 

 

     (25)      

     (26)      

   (27) 

 

6.3 Closed-Form Optimal Weight 

The optimal horizon-dependent weight is obtained by minimizing ( ) over (  ). 

Taking the first-order condition: 

 

 
 

yields: 

         (28) 

 

This expression provides an explicit analytical solution for the optimal combination weight at each 

forecasting horizon. 

Importantly, since all second-order moments depend on (H), the weight becomes intrinsically 

horizon-dependent without imposing any exogenous functional form. 

6.4 Limiting Behavior 

The model admits interpretable limiting properties. 

Proposition 1 (Short-Horizon Dominance) 

If: 

 
 

then: 

 

 
 

indicating linear dominance in short-term forecasting. 

Proposition 2 (Long-Horizon Nonlinear Relevance) 

If nonlinear error variance decreases relative to linear variance as (H) increases: 

 

 
 

then: 
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suggesting increasing importance of nonlinear dynamics for long-term forecasts. 

6.5 Monte Carlo-Based Estimation of Horizon-Specific Risk Components 
In finite samples, the second-order moments: 

 

 
 

are estimated via Monte Carlo simulation. 

Let  denote simulated future paths. For each simulation (s), compute: 

 
Then: 

    (29) 

       (30) 

     (31) 

 

These estimates yield: 

 

 
as a stochastic object, allowing construction of confidence intervals and probabilistic forecast 

distributions. 

6.6 Theoretical Implication 

The proposed framework therefore generalizes classical forecast combination in three directions: 

 It embeds horizon-specific optimality. 

 It preserves structural interpretability. 

 It transforms deterministic combination into a probabilistic architecture via Monte Carlo 

integration. 

Accordingly, the model should not be interpreted as a simple hybrid specification, but rather as a 

horizon-adaptive risk-minimizing forecasting system grounded in explicit stochastic principles. 

6.7 Statistical Superiority Conditions and Model Dominance 

This subsection establishes the conditions under which the proposed horizon-adaptive hybrid forecast 

strictly dominates each individual component in terms of mean squared prediction error (MSPE). 

6.7.1 Relative Risk Comparison 

Let: 

 

   (32) 

      (33) 

 

     (34) 

Using the optimal weight  the minimized combined risk is: 

 

       ( 35) 
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This expression generalizes the classical forecast combination result to the horizon-dependent setting. 

6.7.2 Dominance Over Individual Models 

Proposition 3 (Strict Risk Reduction) 

If the component forecast errors are not perfectly correlated, i.e.: 

  
where 

    (36)  

then: 

 
 

Proof Sketch 

Under imperfect correlation: 

 
 

and the denominator remains positive unless perfect collinearity holds. Hence the combined forecast 

variance is strictly smaller than each individual variance. 

This establishes that diversification across structural regimes (linear and nonlinear dynamics) 

produces statistical gains analogous to portfolio diversification. 

6.7.3 Economic Interpretation of the Dominance Condition 

The dominance condition can be rewritten as: 

 

 
 

Thus, the hybrid model produces gains whenever the econometric and AI components capture 

partially distinct information sets. 

In economic terms: 

The linear model captures systematic, theory-consistent dynamics. 

The AI model captures residual nonlinearities and hidden patterns. 

As long as these informational sources are not redundant, combination yields efficiency gains. 

6.7.4 Horizon-Dependent Efficiency Gains 

Define the relative efficiency gain: 

 

            (37)  

 

Then: 

 
 

Importantly, since correlation itself may vary with horizon: 

 

 
 

efficiency gains become intrinsically horizon-dependent. 

This provides a theoretical justification for multi-horizon evaluation rather than single-horizon 

comparison. 

6.7.5 Monte Carlo Robustness of Superiority 

Using Monte Carlo simulation, one can generate empirical distributions of: 
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for (  ), allowing estimation of: 

 

 
 

Thus, model superiority becomes a probabilistic statement rather than a single-sample conclusion. 

This probabilistic dominance criterion strengthens empirical credibility and aligns the framework 

with modern predictive inference standards. 

6.8 Forecast Comparison Using Diebold-Mariano Test 

To formally evaluate whether the proposed horizon-adaptive hybrid forecast outperforms each 

individual component, we employ the Diebold–Mariano (DM) test, which tests the null hypothesis of 

equal predictive accuracy. 

6.8.1 Forecast Error Series 

Let  denote the forecast error of the hybrid model at horizon (H), and (e_{m,t+H}) the error 

of component  

      (38) 

 

Define the loss differential for each time point (t): 

      (39) 

 

where  is a loss function; commonly used is squared error: 

 
 

6.8.2 Diebold–Mariano Statistic 

The DM test statistic for horizon (H) is: 

    
where: 

 
 

and  is a consistent estimator of the variance of  accounting for autocorrelation at 

multi-step horizons: 

 
with: 

 
 

6.8.3 Hypothesis 

The test evaluates: 
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Rejection of  in favor of  provides formal statistical evidence that the horizon-adaptive 

hybrid model outperforms component (m) at horizon (H). 

6.8.4 Horizon-Dependent Extension 

Since the hybrid weight  varies with (H), the DM statistic can be computed separately for 

each horizon, yielding a sequence:  

  

 
 

his allows a multi-horizon evaluation of model superiority, aligning perfectly with the theoretical 

architecture of the proposed framework. 

 

7. Results 

Given that the study adopts a conceptual Monte Carlo- based validation framework rather than full 

empirical estimation, the results are interpreted within a theoretical simulation environment. 

The Monte Carlo simulation was designed to generate time series composed of both linear 

autoregressive structures and nonlinear transformation components. Multiple forecast horizons 

(short, medium, long) were simulated under controlled variance structures. 

The simulation revealed three consistent structural patterns: 

First, in short forecast horizons, linear econometric components captured the dominant share of 

variance explanation. Forecast error variance remained comparatively stable, and nonlinear 

components contributed marginal improvement. 

Second, as forecast horizon extended, nonlinear components exhibited increasing explanatory power. 

Linear models alone showed rising forecast error dispersion, particularly under simulated nonlinear 

shocks. 

Third, the horizon-conditioned hybrid model demonstrated lower simulated forecast variance 

compared to both isolated econometric and isolated AI specifications. The dynamic weighting 

mechanism adjusted the contribution of each component smoothly across horizons, reducing 

volatility clustering in prediction errors. 

Importantly, these findings are illustrative rather than empirical generalizations. They demonstrate 

structural plausibility and theoretical robustness under controlled conditions. 

 

 
 



 LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT        
ISSN:1581-5374 E-ISSN:1855-363X        
VOL. 24, NO. 1(2026) 

 

439 
 

1. Discussion 

The results support the theoretical proposition that forecasting performance cannot be understood 

independently of horizon structure. Traditional debates that attempt to rank econometric versus AI 

models overlook the structural evolution of predictive dynamics across time. 

The findings reinforce three broader insights: 

 Forecast horizon is not merely a temporal extension; it fundamentally reshapes model 

sensitivity to nonlinearity. 

 Hybridization must be structurally conditioned rather than mechanically averaged. 

 Interpretability and flexibility need not be mutually exclusive if integration is dynamically 

governed. 

The study also contributes to the methodological dialogue between econometrics and AI. Rather than 

positioning AI as a replacement for econometric reasoning, the proposed framework treats it as an 

adaptive complement embedded within a structured architecture. 

From a theoretical standpoint, the framework aligns with bias-variance trade-off principles.  

Short horizons favor lower-variance linear models, whereas longer horizons benefit from nonlinear 

adaptability despite increased model complexity. 

Nevertheless, several limitations must be acknowledged: 

 The absence of empirical application restricts external validity. 

 The Monte Carlo simulation relies on stylized data-generating processes. 

 Parameter optimization remains conceptual rather than data-calibrated. 

These limitations do not weaken the structural contribution but define the scope of inference. 

Conclusion 

This study addressed a central methodological tension in economic forecasting: the structural 

fragmentation between econometric interpretability and artificial intelligence flexibility. 

Rather than comparing models in isolation, the research reframed the problem as one of architectural 

integration conditioned by forecast horizon. A dynamic hybrid framework was proposed in which 

linear and nonlinear components interact through adaptive weighting mechanisms. 

The conceptual Monte Carlo illustration demonstrated that: 

Linear models dominate short-horizon stability. 

Nonlinear structures gain relevance as horizon expands. 

Dynamic hybridization reduces simulated forecast dispersion compared to static or isolated 

specifications. 

The primary contribution of the study lies in repositioning hybrid forecasting from mechanical 

combination to structurally coherent integration. By explicitly incorporating forecast horizon into 

model architecture, the study advances a methodological principle that may guide future empirical 

implementations. 

Future research should apply the proposed framework to real macroeconomic and financial time 

series, explore alternative nonlinear learning architectures (e.g., LSTM, gradient boosting), and 

investigate optimal weighting functions derived from empirical loss minimization. 

Ultimately, the path forward in economic forecasting is not the replacement of econometrics by 

artificial intelligence, but the disciplined synthesis of both within theoretically informed adaptive 

structures. 

Future research may extend the present conceptual validation through large-scale empirical and 

simulation-based testing across diverse macroeconomic environments. 
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