LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT , §
ISSN:1581-5374 E-ISSN:1855-363X LEX—
VOL. 24, NO. 1(2026) LOCALIS

HORIZON-CONDITIONED HYBRID FORECASTING: A DYNAMIC INTEGRATION
FRAMEWORK BETWEEN ECONOMETRICS AND ARTIFICIAL INTELLIGENCE

Dr. Mokaddem Tebra?!, Dr. Elagag Mustapha?, Dr. Bouchama Kaouther?

!Department of Management Sciences, Faculty of Economic, Commercial, and Management Sciences, Mustapha
Stambouli University of Mascara, Algeria.
2 Department of Economic Sciences, Faculty of Economic,Business, and Management Sciences, University of Ain
Temouchent, Algeria.
8 University of Msila, Algeria.

m.tebra@univ-mascara.dz*
mustapha.elagag@univ-temouchent.edu.dz?
kaouther.bouchama@univ-msila.dz®

Received : 21/07/2025 ; Accepted : 21/12/2025

Abstract

Economic forecasting increasingly operates at the intersection of econometric discipline and artificial intelligence driven
flexibility. While traditional econometric models provide interpretability and theoretical consistency, they often struggle
to capture nonlinear and structurally evolving dynamics. Conversely, Al-based forecasting models offer adaptive pattern
recognition capabilities but raise concerns regarding interpretability and structural coherence. This study proposes a
dynamic hybrid conceptual framework that integrates econometric and Al-based components within a forecast-horizon-
conditioned structure. Unlike conventional hybrid models that rely on static residual modeling or simple forecast
averaging, the proposed approach introduces dynamic weighting mechanisms that adjust according to forecast horizon,
thereby structurally balancing linear and nonlinear components.

The framework preserves econometric interpretability in the short run while augmenting predictive flexibility in medium-
and long-term horizons. To illustrate its internal logic and stability properties, a conceptual Monte Carlo-based validation
is presented under stylized theoretical conditions. The study contributes to the forecasting literature by reframing
hybridization as a structurally grounded integration process rather than a mechanical ensemble method, and by explicitly
incorporating forecast horizon as a central determinant of model architecture.

Keywords: Hybrid forecasting, Econometric modeling, Artificial intelligence, Forecast horizon, Monte Carlo illustration.

1. Introduction

Economic forecasting remains one of the most consequential and contested domains within applied
economics. Governments rely on forecasts to design fiscal and monetary strategies; financial
institutions depend on them to price risk; energy markets respond to expectations embedded in
predictive models. Yet despite decades of methodological development, forecasting performance
remains uneven particularly under structural shifts, nonlinear dynamics, and horizon expansion.
Traditional econometric models have long constituted the backbone of economic forecasting.
Frameworks such as ARIMA, VAR, and cointegration-based models provide statistical discipline,
interpretability, and theoretical consistency. Their strength lies in their structural transparency:
parameters can be interpreted, hypotheses can be tested, and policy implications can be derived within
a coherent economic logic. However, these models rest on assumptions of linearity, parameter
stability, and distributional regularity that may not hold in complex macroeconomic environments.
In contrast, artificial intelligence based models including artificial neural networks (ANN), support
vector regression (SVR), and deep learning architectures offer a fundamentally different modeling
philosophy. Rather than imposing a functional structure derived from economic theory, they learn
patterns directly from data. This data-driven flexibility enables them to capture nonlinear interactions
and hidden dynamics often missed by conventional econometric approaches. Nonetheless, their
predictive strength is frequently accompanied by interpretability limitations, sensitivity to data
quality, and the well-known “black box” concern.
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The growing divergence between interpretability and predictive flexibility has led to the emergence
of hybrid forecasting models. Existing hybrid approaches typically combine econometric and Al-
based models either sequentially by modeling residuals or through forecast averaging schemes. While
such strategies often improve short-term predictive accuracy, much of the literature treats
hybridization as a mechanical combination rather than a structurally grounded integration. Moreover,
the majority of hybrid studies do not explicitly incorporate forecast horizon as a determinant of model
weighting or structural balance.
This paper argues that the core challenge in economic forecasting is not the selection of a universally
superior model, but rather the structural misalignment between model architecture, data properties,
and forecast horizon. Building on this premise, the study proposes a dynamic hybrid conceptual
framework that integrates econometric and Al-based components within a horizon-conditioned
structure. Instead of assuming fixed weights or static residual modeling, the proposed approach
introduces forecast-horizon-dependent weighting mechanisms designed to adaptively balance linear
and nonlinear components.
Formally, the proposed framework conceptualizes the economic time series as a composite of linear
and nonlinear structures whose relative contribution varies with the forecast horizon. The econometric
core preserves interpretability and short-term stability, while the Al augmentation captures nonlinear
residual dynamics. A dynamic weighting mechanism governs the integration process, ensuring
structural coherence without sacrificing predictive adaptability.
Given data and some constraints, the study does not claim full empirical validation. Instead, it
provides a structured conceptual Monte Carlo based illustration to demonstrate the expected behavior
of the proposed framework under stylized theoretical conditions. This conceptual validation is
intended to clarify the model’s internal logic and stability properties, rather than to offer empirical
performance claims.
The contribution of this paper is fourfold. First, it introduces horizon-conditioned hybridization as a
structural principle rather than a statistical afterthought. Second, it preserves econometric
interpretability while incorporating nonlinear learning mechanisms.
Third, it proposes a diagnostically informed integration process that reduces arbitrary model
combination. Fourth, it offers a theoretically grounded validation framework to support
methodological transparency.
By repositioning hybrid forecasting as a structurally coherent integration rather than a mechanical
ensemble, this study contributes to the ongoing methodological dialogue between econometrics and
artificial intelligence in economic analysis.
1. Research Problem
Despite substantial methodological progress in both econometrics and artificial intelligence,
economic forecasting remains structurally fragmented. Traditional econometric models offer
interpretability and theoretical grounding but struggle under nonlinear dynamics and structural
breaks. Conversely, Al-based models provide superior nonlinear pattern recognition yet often lack
interpretability and economic coherence.
The core research problem addressed in this study can therefore be formulated as follows:
How can econometric structure and artificial intelligence flexibility be integrated within a
theoretically coherent hybrid framework that dynamically adapts to forecast horizon without
sacrificing interpretability or predictive stability?
This problem reflects three intertwined challenges:

v The interpretability accuracy trade-off

v’ Structural instability across forecast horizons

v The absence of horizon-conditioned hybrid architectures
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Rather than asking which model performs better, this study addresses the structural design of
integration itself.

2. Sub-Research Questions

From the central problem, three sub-questions emerge:

RQ1. To what extent does forecast horizon alter the relative predictive contribution of linear
(econometric) and nonlinear (Al-based) components?

RQ2. Can a dynamic weighting mechanism improve structural coherence compared to static
hybridization schemes?

RQ3. Does horizon-conditioned hybridization conceptually reduce forecast instability under
nonlinear data-generating processes?

These questions shift the focus from model comparison to structural integration dynamics.

3. Research Hypotheses

The study advances three theoretically grounded hypotheses:

H1: The relative predictive contribution of nonlinear components increases as forecast horizon
expands.

H2: Dynamic weighting mechanisms yield greater structural stability than fixed-weight hybrid
combinations.

H3: A horizon-conditioned hybrid framework conceptually reduces forecast variance under nonlinear
simulated environments compared to isolated econometric or Al models.

These hypotheses are conceptual and illustrated through structured Monte Carlo simulation rather
than empirical claim.

2. Literature Review: From Linear Dominance to Structural Hybridization

Methodological
Limitations

What Our Study
Adds
Introduces dynamic

Title of Study Model Used

Main Findings

The Combination of Forecasts Linear Combined - horizon-dependent
forecast forecasts Static weights; no weightin
Bates & Granger (1969) e outperform structural dynamics gnting
combination .
single models
Time Series Forecasting Using a Hybrid improves .
Hybrid ARIMA and Neural ARIMA + nonlinear Fixed architecture; Aigzﬁg;r;orzﬁglc
Network Model ANN forecasting no macro foundation . g .
adaptive weights
Zhang (2003) accuracy
A Hybrid ARIMA and Support o Extends framework
Vector Machines Model ARIMA + Strong Limited to macroeconomic
SVR performance in interpretability; variables

Pai & Lin (2005)

financial series finance-focused

Provides structured
econometric-Al

Statistical and Machine
Learning Forecasting Methods

ML strong short-

Statistical vs .
term; mixed

No integration

ML models structure proposed . . .
Makridakis et al. (2018) long-term results integration logic
Modeling Long- and Short-Term Captures long Hiah data Embeds LSTM
Temporal Patterns with Deep memory and . 9 within economically
LSTM . requirements; black- Lo .
Neural Networks nonlinear box nature disciplined hybrid
Lai et al. (2018) dynamics architecture
Forecasting Inflation in a Data- ML imp-roves ) Introduces functional
Rich Environment Using LASSO, . |nflat!on _ _Weak theqlr_etl'cal decomposition + Al
Machine Learning Methods F::a;r‘igtm ore(;eilstr:ng n Interprh(:‘tz?ildlty, no augmentation within
Medeiros et al. (2021) . o yorie dynamic econometric
Boosting dimensional decomposition core
settings
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2.1 The Linear Paradigm and the Birth of Forecast Combination

Modern forecasting theory initially evolved within a linear econometric paradigm. Early
contributions were grounded in the assumption that economic relationships could be approximated
through stable parametric structures. Within this tradition, the seminal work of Bates and Granger
(1969) introduced a conceptual breakthrough: rather than selecting a single “best” model, forecasts
from multiple models could be combined to reduce mean squared prediction error.

This idea marked a subtle but profound epistemological shift. Forecasting ceased to be a problem of
model supremacy and became a problem of model complementarity. Yet, the combination framework
remained statistically mechanical. Weights were derived from past error covariance structures and
assumed to be constant over time. The approach did not account for nonlinearities, structural breaks,
or horizon-specific dynamics features that characterize real-world macroeconomic data.

Thus, while foundational, linear forecast combination operated within a static universe.

2.2 Hybridization as Error Decomposition: ARIMA-ANN and ARIMA-SVR

The next intellectual transition emerged with the recognition that economic time series often exhibit
nonlinear patterns that linear structures cannot capture. Zhang (2003) formalized this intuition by
proposing an ARIMA-ANN hybrid model, decomposing a time series into a linear component
handled by ARIMA and a nonlinear component modeled through neural networks.
The conceptual contribution was significant: nonlinearity was no longer treated as noise but as
structured residual information. However, this hybridization remained sequential and rigid.

The linear model was estimated first, and the neural network merely corrected residuals.

There was no endogenous mechanism determining the relative contribution of each model across
forecast horizons.

Pai and Lin (2005) extended this architecture by replacing ANN with Support Vector Regression
(SVR), improving generalization properties in smaller samples. Yet again, hybridization remained
procedural rather than structural. No theoretical integration guided model interaction; instead,
empirical performance dictated model selection.

These studies demonstrated that hybridization improves accuracy but they did not redefine the logic
of integration.

2.3 Machine Learning as Substitution Rather than Integration

A more radical shift occurred with the rise of machine learning methods applied directly to
macroeconomic forecasting. The large-scale evidence from the M4 competition (Makridakis et al.,
2018) revealed that machine learning models often outperform traditional statistical models in short-
horizon forecasting tasks. However, the study also highlighted an uncomfortable truth: statistical
models remain  competitive, and sometimes superior, in stable environments.
This finding challenges the narrative of technological displacement. Machine learning does not
universally dominate econometric models; its superiority is conditional.

Similarly, Medeiros et al. (2021) demonstrated that high-dimensional machine learning techniques
(LASSO, Random Forests, Boosting) enhance inflation forecasting in data-rich environments. Their
results confirmed the predictive gains of flexible learners. Yet the approach largely replaced rather
than integrated econometric structures. Interpretability was secondary to predictive performance.

In both cases, the dominant research question became: Which method performs better?

The deeper question How should methods be structurally organized? remained largely unexplored.
2.4 Deep Learning and Temporal Memory: Power Without Structure

Deep learning architectures, particularly LSTM networks (Hochreiter & Schmidhuber, 1997),
introduced the ability to model long memory and nonlinear dynamic dependencies.

Applications such as Lai et al. (2018) demonstrated remarkable predictive power in complex time
series settings.

Yet, deep models amplify a central tension in economic forecasting: predictive strength versus
structural interpretability. In policy-relevant contexts such as inflation or GDP forecasting opacity

425



LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT , §
ISSN:1581-5374 E-ISSN:1855-363X LEX—
VOL. 24, NO. 1(2026) LOCALIS

poses methodological risks. Forecasting is not merely an engineering task; it is a decision-support
system embedded in institutional accountability.

Thus, while deep learning extends temporal representation capacity, it does not inherently solve the
integration dilemma between structure and flexibility.

2.5 Synthesis: Three Paradigms, One Missing Architecture

The literature can therefore be organized into three paradigms:

v Linear dominance and static combination (Bates & Granger, 1969).

v’ Sequential hybrid correction models (Zhang, 2003; Pai & Lin, 2005).

v Machine learning substitution frameworks (Makridakis et al., 2018; Medeiros et al., 2021).
Each paradigm advances forecasting accuracy. None, however, fully resolves the structural
integration problem.

Specifically, four gaps persist:

v" Lack of horizon-dependent weighting mechanisms.

v Absence of an economically anchored hybrid structure.

v’ Limited consideration of dynamic model complementarity.

v Insufficient reconciliation between interpretability and nonlinear adaptability.

In short, the field has moved from model rivalry to model coexistence but not yet to structured
methodological orchestration.

2.6 Intellectual Positioning of the Present Study

The present study enters this debate not by proposing yet another hybrid variant, but by formalizing
a horizon-dependent structural hybrid architecture.

Rather than:

v" Combining forecasts mechanically,

v Correcting residuals sequentially, or

v Replacing econometric models with machine learning,

This study proposes a functionally organized system in which:

An econometric core preserves theoretical coherence and statistical discipline.

An Al augmentation layer captures nonlinear residual complexity.

A dynamic weighting scheme adjusts model contributions according to forecast horizon.

This design reframes hybridization from a technical trick to a methodological principle.
The contribution is therefore not incremental but architectural:

It provides a structured logic for integrating econometrics and artificial intelligence within a unified
forecasting system.

3 Theoretical Foundations of Economic Forecasting

Economic forecasting is widely regarded as one of the most essential analytical tools supporting
economic policy formulation and decision-making at both macroeconomic and microeconomic
levels. It enables policymakers and economic agents to anticipate future trajectories of economic
variables within an environment increasingly characterized by uncertainty and structural complexity.
The evolution of forecasting models from traditional econometric approaches to intelligent and hybrid
models cannot be fully understood without revisiting the theoretical foundations that have shaped this
field of knowledge. Economic forecasting is not merely a statistical exercise; rather, it is the outcome
of a profound interaction between economic theory, econometrics, and advances in quantitative
analytical tools.

3.1 Economic Forecasting as a Decision Making Tool and a Means of Reducing Uncertainty
Economic forecasting is grounded in the fundamental assumption that economic behavior, despite its
inherent complexity, exhibits certain regular patterns that can be identified and analyzed. The core
function of forecasting lies in reducing the degree of uncertainty surrounding economic decisions,
whether related to fiscal and monetary policies or to investment and production choices. Forecasting
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does not aim to “predict the future” in an absolute sense, but rather to estimate expected values of
economic variables based on the information available at a given point in time.

Granger (1969) emphasized that the value of a forecasting model does not lie in its absolute accuracy,
but in its ability to improve decision-making outcomes relative to a situation in which no forecast is
available. Accordingly, forecasting is viewed as a functional tool whose quality is assessed by its
capacity to reduce forecast errors and enhance the effectiveness of economic decisions.

3.2 The Econometric Logic of Forecasting Model Construction

Econometrics constitutes the traditional methodological framework upon which most economic
forecasting models have been built. This framework integrates economic theory, statistics, and
mathematics in order to describe and quantitatively estimate relationships among economic variables.
Traditional econometric models have typically relied on a set of core assumptions, most notably
linearity, parameter stability, and the stationarity of time series.
Within this context, time series models represent the cornerstone of economic forecasting. Economic
variables are treated as functions of their past values and stochastic error terms.

The general time series representation can be expressed as follows:

Ve = fVe—1, Y2, - &) (1)

where(y.) denotes the variable to be forecasted and (£:) represents the random error term.

The seminal contribution of Box and Jenkins (1976) established a systematic and rigorous
methodology for forecasting through ARIMA models, which remain among the most widely applied
tools in economic analysis.

3.3 Linear Models and Their Methodological Limitations

Traditional econometric models are fundamentally based on the assumption of linearity, meaning that
relationships between variables can be represented through linear functional forms. For instance, the
autoregressive model of order ( p ), denoted AR (p ), is expressed as:

p
Yye=a+ Z ¢ye—i + & (2)
=1

Despite their interpretative clarity and strong economic intuition, the effectiveness of linear models
becomes limited in the presence of:

e Nonlinear relationships

e Structural breaks

e Changes in economic agents’ behavior

e Long-memory dynamics in time series
Numerous empirical studies have demonstrated that reliance on linear models alone leads to weak
forecasting performance, particularly during periods of heightened economic instability (Stock &
Watson, 2001).
3.4 The Shift Toward Greater Flexibility: The Crisis of Linear Interpretation
Recurring economic crises such as financial crises and episodes of extreme market volatility have
raised serious doubts about the ability of traditional econometric models to capture the growing
complexity of modern economies. It has become increasingly evident that economic relationships are
not stable over time and that economic dynamics are influenced by psychological, institutional, and
technological factors that cannot be adequately accommodated within a rigid linear framework.
This context has stimulated the search for more flexible modeling approaches capable of:

e Capturing nonlinear patterns

e Handling complex interactions

e Adapting to structural changes
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These developments paved the way for the growing integration of artificial intelligence techniques
into the field of economic forecasting.

3.5 Artificial Intelligence as a Methodological Extension of Econometrics

The incorporation of artificial intelligence into economic forecasting does not represent a
paradigmatic rupture with econometrics; rather, it is best understood as a methodological extension
aimed at overcoming some of the restrictive assumptions of traditional models.

Artificial intelligence models rely on a fundamentally different logic, one that emphasizes learning
from data instead of imposing a predefined functional form on economic relationships.
Artificial neural networks (ANN), for example, model the relationship between inputs and outputs
through multilayer structures that can be mathematically represented as:

y. =f (i wi'g (Zn: VX T bi)) (3)

j=1 i=1
where:
(%.) denotes the input variables
(v4) and (%) are the network weights

(8(')) represents the activation function
This formulation highlights the capacity of intelligent models to approximate highly complex
nonlinear relationships without requiring strong a priori assumptions regarding the underlying
economic structure.
3.6 Interpretability Challenges and the Limits of Intelligent Models
Despite the strong forecasting performance demonstrated by artificial intelligence models in
numerous economic applications, they face several methodological criticisms, most notably:

e Weak economic interpretability (the “black box” problem)

e High dependence on data volume and quality

e Risk of overfitting
Zhang et al. (1998) cautioned that superior predictive accuracy does not necessarily imply theoretical
superiority, underscoring the need for cautious and well-structured integration of intelligent models
within an explicit analytical framework.
3.7 Toward an Integrative Approach to Economic Forecasting
The theoretical review of economic forecasting foundations reveals that each methodological school
traditional or intelligent possesses distinct strengths as well as clear limitations. Traditional
econometric models offer interpretability and statistical discipline, whereas intelligent models excel
in handling nonlinearity and complexity. This methodological complementarity underscores the need
for an integrative approach that combines both paradigms, thereby providing a logical transition
toward hybrid forecasting models, which constitute the central focus of this paper.

4 Traditional Econometric Forecasting Models
Traditional econometric models constitute the historical and methodological foundation of economic
forecasting. Their development has been closely associated with the emergence of econometrics as
an independent scientific discipline aimed at translating theoretical economic relationships into
mathematical formulations that are estimable and empirically verifiable. These models have played a
central role in the analysis of economic time series, particularly in contexts characterized by limited
data availability and complex economic dynamics. They have provided well-structured
methodological tools that enable the interpretation of the dynamic behavior of economic variables
and the forecasting of their future trajectories.
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4.1 The General Logic of Traditional Econometric Models
Traditional econometric models are built upon the assumption that economic behavior, despite its
fluctuations, follows an underlying regular structure that can be represented through relatively stable
mathematical relationships. These models typically assume that relationships among variables are:

e Linear or transformable into linear forms

e Stable over time

e Statistically testable
Within this framework, forecasting is viewed as a natural extension of the estimation process,
whereby estimated parameter values are employed to project future values of the dependent variable.
4.2 Autoregressive and Moving Average Models (ARMA / ARIMA)
Box-Jenkins models are among the most widely used approaches for forecasting economic time
series due to their relative simplicity and practical effectiveness. The autoregressive model of order
(p), denoted AR (p), is based on the premise that the current value of an economic variable depends
on its past values and is expressed as:

p
ye=at ) ete ()
=1

The moviﬁg average model of order (q), MA (q), represents the current value as a function of past
error terms:

q
Ve=unt z 9jsz—j + & (5)
=1

Combining these two structures yields the ARMA (p,q) model. When dealing with non-stationary
time series, the ARIMA (p,d,q) model incorporates differencing to achieve stationarity:

®(L)(1 - L)Yy, =0(L)s, (6)

where ( L) denotes the lag operator.

Despite their widespread application, the effectiveness of these models remains conditional upon the
stationarity assumption and their limited ability to capture nonlinear relationships, which constitutes
one of their principal methodological constraints.

4.3 Exponential Smoothing Models

Exponential smoothing models are extensively used for short-term forecasting, particularly in applied
contexts requiring rapid responsiveness to recent changes in time series data. Simple exponential
smoothing is defined as:

yt=ay,+(1-a)yt—-1  (7)

where (@) is the smoothing parameter, bounded between 0 and 1.

These models have been further developed to incorporate trend and seasonality components, as in the
Holt Winters framework, thereby enhancing their forecasting performance in certain settings.
However, despite their practical efficiency, exponential smoothing models lack a strong explicit
economic theoretical foundation and remain unable to adequately address structural shocks or abrupt
changes in economic behavior.

4.4 Vector Autoregression Models (VAR) and Multivariate Forecasting

The introduction of vector autoregression (VAR) models represented a significant advancement in
economic forecasting by enabling the joint modeling of multiple endogenous variables within a
unified dynamic framework, without imposing strict theoretical restrictions.
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A VAR model of order ( p ) can be expressed as:
Yi= c+Zi =1PAiYt—i+s (8)

where (¥:) denotes a vector of economic variables.

VAR models are valued for their flexibility and their capacity to capture dynamic interactions among
variables. Nevertheless, they face two major limitations:

Parameter proliferation as the number of variables increases

Reduced forecasting accuracy in the presence of strong nonlinearities

Moreover, the economic interpretation of results becomes increasingly complex as model
dimensionality expands.

4.5 Cointegration and Error Correction Models (VECM)

When time series are non-stationary but integrated of the same order, cointegration models provide a
suitable framework for forecasting while preserving long-run equilibrium relationships. The vector
error correction model (VECM) can be represented as:

p—1
AYt =TIYt—1+ z Y.+ (9)

=1

where the matrix (I1) captures long-run equilibrium relationships among the variables.
While these models are theoretically robust and economically interpretable, their ability to capture
sudden structural changes and complex nonlinear dynamics remains limited.
4.6 Critical Assessment of the Forecasting Performance of Traditional Models
A substantial body of empirical literature indicates that traditional econometric models perform well
in relatively stable economic environments, where linear relationships prevail and economic behavior
exhibits a degree of regularity. However, their performance deteriorates markedly in the presence of:

e Economic crises

e High volatility

e Unanticipated behavioral shifts
Stock and Watson (2001) demonstrated that linear models frequently fail to generate accurate
forecasts during periods of economic instability, thereby limiting their effectiveness as
comprehensive forecasting tools.
4.7 Limitations of Traditional Econometric Models and Prospects for Advancement
The principal limitations of traditional econometric models can be summarized as follows:

e The assumption of linearity and parameter stability

e Limited capacity to capture nonlinear dynamics

e High sensitivity to structural shocks

e Strong dependence on restrictive statistical assumptions
These limitations do not imply the failure of traditional models, but rather highlight the need for more
flexible approaches that leverage data driven learning mechanisms. This realization provides a natural
transition toward intelligent forecasting models.

5 Intelligent Forecasting Models
The growing complexity of economic phenomena and the accelerating pace of structural
transformations have generated an increasing demand for forecasting models that are more flexible
and capable of capturing nonlinearity and complex interactions among variables.
Within this context, artificial intelligence based models have emerged as a new methodological
direction in economic forecasting not as a complete substitute for traditional econometrics, but rather
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as complementary analytical tools designed to overcome some of its structural limitations. This shift
is grounded in a fundamentally different modeling logic, one that relies on learning from data rather
than imposing predefined functional forms on economic relationships.

5.1 Conceptual Foundations of Intelligent Forecasting Models

Intelligent forecasting models differ from traditional econometric models in their methodological
starting points. Instead of relying on explicit assumptions regarding the nature of relationships
among variables, they are based on learning algorithms capable of extracting latent patterns directly
from data. In this framework, forecasting is treated as an optimization problem, where the objective
is to identify the model that minimizes a predefined loss function, such as the mean squared error
(MSE):

T
1
mine;FZ (v —7)° (10)
t=1

where (8 ) denotes the set of parameters of the intelligent model.

This methodological shift reflects a transition from an emphasis on economic interpretation toward a
focus on predictive accuracy, giving rise to an extensive debate regarding the role of economic theory
in the era of artificial intelligence.

5.2 Artificial Neural Networks (ANN)

Artificial neural networks are among the most widely applied artificial intelligence models in
economic forecasting due to their strong ability to represent complex nonlinear relationships. These
models are inspired by simplified representations of the human brain, consisting of interconnected
layers of processing units (neurons).

A general representation of a multilayer neural network can be expressed as:

H n
y. =f ZVV]- g (z ViXie T bj) (11)

j=1 i=1

where:
("-,:) represents the explanatory variables
(v5) and (;) denote the connection weights

(9 (')) is the activation function

(H) is the number of hidden-layer neurons

The principal strength of neural networks lies in their ability to capture nonlinear dynamics without
requiring prior specification of the functional form. However, this flexibility comes at the cost of
economic interpretability, as it becomes difficult to associate estimated weights with clear economic
meanings.

5.3 Support Vector Regression (SVR)

Support vector regression models constitute a powerful class of intelligent forecasting tools,
particularly suitable for situations characterized by relatively limited data availability. SVR is based
on the idea of identifying a predictive function that minimizes forecasting errors within a predefined

margin (£). The optimization problem can be expressed as:
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T
1 2
1111;1 Ellwll + CZ (& +8) (12)
t=1

subject to:
ye — (w-'x, + b) <e+& (w-xt+b) —yt<cect+ & (13)

SVR models offer a favorable balance between model complexity and predictive accuracy.
Nevertheless, their performance depends critically on the choice of kernel function and hyper
parameters, which requires careful methodological consideration when applied in an economic
context.

5.4 Deep Learning Models and Time Series Forecasting (LSTM)

With the advancement of deep learning techniques, Long Short-Term Memory (LSTM) models have
emerged as effective tools for forecasting economic time series, particularly those characterized by
long memory and complex temporal dependencies. These models are designed to retain information
over extended time horizons, making them well suited for dynamic economic data.

The core LSTM cell can be represented by the following equations:

fe=o(Ws-[h_p,x] +bs)  (14)
i, = o(W; - [he—y, x.] + b)) (15)
Co=fr Coy +i,-tanh(W,-[h—y,x.] + b)) (16)
h, = o, - tanh (C,) (17)

These equations describe the mechanisms governing information retention and updating within the
memory cell. Despite their strong forecasting performance, LSTM models suffer from severe
limitations in economic interpretability and impose substantial requirements in terms of data volume
and computational resources.
5.5 Forecasting Performance of Intelligent Models
A broad range of empirical studies has demonstrated that intelligent forecasting models often
outperform traditional econometric models in environments characterized by strong nonlinearity and
structural instability. However, this superiority is not unconditional and depends on several factors,
including:

e Data quality

e Sample size

e Forecast horizon
Moreover, short-term forecasting superiority does not necessarily translate into long-term dominance,
particularly in the presence of sudden structural changes.
5.6 Methodological Challenges of Intelligent Models
Despite their considerable potential, artificial intelligence—based models face several fundamental
methodological challenges, most notably:

e The black box problem

e Weak economic interpretability

e The risk of overfitting

e Difficulties in incorporating theoretical economic knowledge

432



LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT ,
ISSN:1581-5374 E-ISSN:1855-363X LEX -
VOL. 24, NO. 1(2026) LOCALIS

Makridakis et al. (2018) argue that predictive accuracy alone should not serve as the sole criterion for
model evaluation; interpretability and methodological stability must also be taken into account.
5.7 Artificial Intelligence and Econometrics: Complementarity or Competition?
A comparative assessment of intelligent and traditional econometric models reveals that their
relationship is one of complementarity rather than substitution. Intelligent models excel at capturing
nonlinearity and complexity, whereas econometric models retain a comparative advantage in
interpretability and methodological discipline. This complementarity has fueled growing interest in
hybrid forecasting models, which aim to combine predictive accuracy with economic interpretability
thereby providing a logical transition to the next section of this paper.

6. Theoretical Properties and Optimal Horizon-Dependent Weight Derivation
This section formalizes the theoretical foundations of the proposed hybrid forecasting architecture by
deriving the optimal horizon-dependent combination weights and establishing the structural
properties of the model. Unlike heuristic hybrid schemes, the proposed framework is grounded in an
explicit risk minimization principle.
6.1 Orthogonal Component Representation
Assume that the economic time series admits an additive structural representation:

V=LA N, (18)

where:
( L)) denotes the economically interpretable linear component,

(V2) captures nonlinear dynamics.
To ensure identifiability and statistical coherence, we assume orthogonality:

EL,.N]=0

This orthogonal decomposition guarantees that the nonlinear augmentation does not replicate the
information already captured by the econometric core, thereby preserving interpretability while
allowing structural enrichment.

6.2 Horizon-Specific Risk Minimization

Let (H) denote the forecasting horizon. Define the component forecasts:

Lt+H, Nt+-H
The combined forecast is defined as:

yt+ H(w)=w(H)Lt+ H+\big(1—w(H\big) Ny (19)

Let the forecast_g_rrors be:
e(H)=Vuu—Lun (20)

ex(H)=Vuw—Nen (21)
The combined error is:
e H)y=we,(H)+(1-w)ex(H)  (22)

The horizon-specific quadratic risk is:
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LH(W)=E\b1'g{ e H)? bljg] (23)
Expanding:

Lo (W W3 (H)+(1—w) > H)+2w(l-wo(H)  (24)
where:

o; (H)=var(e,(H)) (25)
ox(H)=Var( e (H)) (26)
o n(H)= Cov( e,_(H),eJ\,(H)) 27)

6.3 Closed-Form Optimal Weight

The optimal horizon-dependent weight is obtained by minimizing ( £z (w)) over ( w€[0,1]),
Taking the first-order condition:

dlse(w) —0
dw

yields:
w' (H)

oM H)—ox(H)
o3 (H)+or(H) =20 H) (28)

This expression provides an explicit analytical solution for the optimal combination weight at each
forecasting horizon.

Importantly, since all second-order moments depend on (H), the weight becomes intrinsically
horizon-dependent without imposing any exogenous functional form.

6.4 Limiting Behavior

The model admits interpretable limiting properties.

Proposition 1 (Short-Horizon Dominance)

If:

o (H)<o3(H) forsmall H
then:

}}EB w (H)—1

indicating linear dominance in short-term forecasting.
Proposition 2 (Long-Horizon Nonlinear Relevance)
If nonlinear error variance decreases relative to linear variance as (H) increases:

lim o2 <g?
lim o (H) <oy (H)

then:
}}m w* (H)—0
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suggesting increasing importance of nonlinear dynamics for long-term forecasts.
6.5 Monte Carlo-Based Estimation of Horizon-Specific Risk Components
In finite samples, the second-order moments:

o7 (H), oH), o(H)

are estimated via Monte Carlo simulation.
.5)5
Let (H'Hszl) denote simulated future paths. For each simulation (s), compute:
e (H), ey (H)
Then:

-‘?Lz(m:%';zs=15\1;1'5,»(9‘;)(H)\zu;c,r)2 (29
oN(t)=5) s=1\bif 47 (b))

)
1
(=) & (H) ey (H)
’ S; : (31)

These estimates yield:

w (H)
as a stochastic object, allowing construction of confidence intervals and probabilistic forecast
distributions.
6.6 Theoretical Implication
The proposed framework therefore generalizes classical forecast combination in three directions:

v' It embeds horizon-specific optimality.

v’ It preserves structural interpretability.

v’ It transforms deterministic combination into a probabilistic architecture via Monte Carlo

integration.

Accordingly, the model should not be interpreted as a simple hybrid specification, but rather as a
horizon-adaptive risk-minimizing forecasting system grounded in explicit stochastic principles.
6.7 Statistical Superiority Conditions and Model Dominance
This subsection establishes the conditions under which the proposed horizon-adaptive hybrid forecast
strictly dominates each individual component in terms of mean squared prediction error (MSPE).
6.7.1 Relative Risk Comparison
Let:

MSPE,(H)=c3(H) (32)
MSPEW(H)=c3(H) (33)

MSPEA H)=min L;; (w)

(34)
Using the optimal weight (w (#)), the minimized combined risk is:
MSPE(H) ?i(ff)cri\-(»ﬂ)civ(ff) .
or(H)+oy(H)20(H)  (35)
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This expression generalizes the classical forecast combination result to the horizon-dependent setting.
6.7.2 Dominance Over Individual Models

Proposition 3 (Strict Risk Reduction)

If the component forecast errors are not perfectly correlated, i.e.:

lpn(A)|<1
where »
pox(H) o H)

o (H)o(H) (36)
then:
MSPEA H)< min MSPE,( H), MSPE\( H)

Proof Sketch
Under imperfect correlation:
0205—02 >0

and the denominator remains positive unless perfect collinearity holds. Hence the combined forecast
variance is strictly smaller than each individual variance.

This establishes that diversification across structural regimes (linear and nonlinear dynamics)
produces statistical gains analogous to portfolio diversification.

6.7.3 Economic Interpretation of the Dominance Condition

The dominance condition can be rewritten as:

pv(H)#11

Thus, the hybrid model produces gains whenever the econometric and Al components capture
partially distinct information sets.

In economic terms:

The linear model captures systematic, theory-consistent dynamics.

The Al model captures residual nonlinearities and hidden patterns.

As long as these informational sources are not redundant, combination yields efficiency gains.

6.7.4 Horizon-Dependent Efficiency Gains

Define the relative efficiency gain:

min MSPE;(H),MSPE\(H) MSPEA H)
min MSPE; ( H), MSPE\( H) (37)

Then:
A(H)>0 iff |p(A)|<1

Importantly, since correlation itself may vary with horizon:

pov(H) f(H)

efficiency gains become intrinsically horizon-dependent.

This provides a theoretical justification for multi-horizon evaluation rather than single-horizon
comparison.

6.7.5 Monte Carlo Robustness of Superiority

Using Monte Carlo simulation, one can generate empirical distributions of:
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AG (H)

for (5= 1,...5), allowing estimation of:

P\ big(A(H)>0\big)

Thus, model superiority becomes a probabilistic statement rather than a single-sample conclusion.
This probabilistic dominance criterion strengthens empirical credibility and aligns the framework
with modern predictive inference standards.

6.8 Forecast Comparison Using Diebold-Mariano Test

To formally evaluate whether the proposed horizon-adaptive hybrid forecast outperforms each
individual component, we employ the Diebold—Mariano (DM) test, which tests the null hypothesis of
equal predictive accuracy.

6.8.1 Forecast Error Series

Let (ece#) denote the forecast error of the hybrid model at horizon (H), and (e_{m,t+H}) the error
of component (€L N)

€cos i-Verg— YVt H\quademt+H=y,, H_.VI:JL (38)

Define the loss differential for each time point (t):
d.i=2(ecoer) =& emesn) (39

where (&()) is a loss function; commonly used is squared error:

gle)=¢

6.8.2 Diebold—Mariano Statistic
The DM test statistic for horizon (H) is:

dH
: }V?fr(FH)
where:

= 1 o
dﬂ=ﬁz =1% Hdt’H

DM~

and (Var(@) is a consistent estimator of the variance of (), accounting for autocorrelation at
multi-step horizons:

i 1 =
Var(dH)= T—H[Y°+zz =1 yk]
with:

Yi=Cov(d,ppdp i11)

6.8.3 Hypothesis
The test evaluates:

437



LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT , §
ISSN:1581-5374 E-ISSN:1855-363X LEX—
VOL. 24, NO. 1(2026) LOCALIS

Ho’ﬂ d&H]=0 (no difference in predictive accuracy)
H,:E|d,;]|#0 (hybrid forecast superior)

Rejection of (#b) in favor of (#1) provides formal statistical evidence that the horizon-adaptive
hybrid model outperforms component (m) at horizon (H).
6.8.4 Horizon-Dependent Extension

Since the hybrid weight (w (H)) varies with (H), the DM statistic can be computed separately for
each horizon, yielding a sequence:

DM H=1Hma

his allows a multi-horizon evaluation of model superiority, aligning perfectly with the theoretical
architecture of the proposed framework.

7. Results
Given that the study adopts a conceptual Monte Carlo- based validation framework rather than full
empirical estimation, the results are interpreted within a theoretical simulation environment.
The Monte Carlo simulation was designed to generate time series composed of both linear
autoregressive structures and nonlinear transformation components. Multiple forecast horizons
(short, medium, long) were simulated under controlled variance structures.
The simulation revealed three consistent structural patterns:
First, in short forecast horizons, linear econometric components captured the dominant share of
variance explanation. Forecast error variance remained comparatively stable, and nonlinear
components contributed marginal improvement.
Second, as forecast horizon extended, nonlinear components exhibited increasing explanatory power.
Linear models alone showed rising forecast error dispersion, particularly under simulated nonlinear
shocks.
Third, the horizon-conditioned hybrid model demonstrated lower simulated forecast variance
compared to both isolated econometric and isolated Al specifications. The dynamic weighting
mechanism adjusted the contribution of each component smoothly across horizons, reducing
volatility clustering in prediction errors.
Importantly, these findings are illustrative rather than empirical generalizations. They demonstrate
structural plausibility and theoretical robustness under controlled conditions.

Horizon-Adaptive Stochastic Hybrid Forecasting Model

Horizon-Adaptive Stochastic Hybrid Forecasting Model

Time Series: ¥, Horizon-Dependent Weights Proposed Hybrid Forecast

Linear Component L,7_> Q‘(HFI(O,’(")'O»G (H).0], N D

Monte Carlo

1| Nontinear Component N| Time Series: Y 3 i
4 Optimal Combination Forecast dsted Rk Mesiaies Horizon-Dependent Weights Sition ' .
Orthogonal Decomposition . 2 Diebold-Mariano Test
Voot = WH) Lesp + [1-w 6] Nowy — Prefundent Measures o s
. Linear Component L (W'(H) = f(of (H), oH). 0,(H))
t| Classical Forecast Ley’ [ Ye Proposed Hybrid Test Nonlinear Component Ny

| Al Y@

—p
YeaH = w'(H)Lyy, (11)

E ic
Orthogonal Decomposition . Optimal G nmh?mlioﬂ foraat E as H,; No Difference
Yrori = WO (H) Loy + (1= W'H) Ny

Multi-Horizon Evaluation & Model Comparison Multi-Horizon Evaluation & Model Comparison

Forecast Horizon (H)

From the Researchers From the Researd chers.
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1. Discussion
The results support the theoretical proposition that forecasting performance cannot be understood
independently of horizon structure. Traditional debates that attempt to rank econometric versus Al
models overlook the structural evolution of predictive dynamics across time.
The findings reinforce three broader insights:

» Forecast horizon is not merely a temporal extension; it fundamentally reshapes model

sensitivity to nonlinearity.
» Hybridization must be structurally conditioned rather than mechanically averaged.
> Interpretability and flexibility need not be mutually exclusive if integration is dynamically
governed.

The study also contributes to the methodological dialogue between econometrics and Al. Rather than
positioning Al as a replacement for econometric reasoning, the proposed framework treats it as an
adaptive complement embedded within a structured architecture.
From a theoretical standpoint, the framework aligns with bias-variance trade-off principles.
Short horizons favor lower-variance linear models, whereas longer horizons benefit from nonlinear
adaptability despite increased model complexity.
Nevertheless, several limitations must be acknowledged:

» The absence of empirical application restricts external validity.

» The Monte Carlo simulation relies on stylized data-generating processes.

» Parameter optimization remains conceptual rather than data-calibrated.
These limitations do not weaken the structural contribution but define the scope of inference.
Conclusion
This study addressed a central methodological tension in economic forecasting: the structural
fragmentation between econometric interpretability and artificial intelligence flexibility.
Rather than comparing models in isolation, the research reframed the problem as one of architectural
integration conditioned by forecast horizon. A dynamic hybrid framework was proposed in which
linear and nonlinear components interact through adaptive weighting mechanisms.
The conceptual Monte Carlo illustration demonstrated that:
Linear models dominate short-horizon stability.
Nonlinear structures gain relevance as horizon expands.
Dynamic hybridization reduces simulated forecast dispersion compared to static or isolated
specifications.
The primary contribution of the study lies in repositioning hybrid forecasting from mechanical
combination to structurally coherent integration. By explicitly incorporating forecast horizon into
model architecture, the study advances a methodological principle that may guide future empirical
implementations.
Future research should apply the proposed framework to real macroeconomic and financial time
series, explore alternative nonlinear learning architectures (e.g., LSTM, gradient boosting), and
investigate optimal weighting functions derived from empirical loss minimization.
Ultimately, the path forward in economic forecasting is not the replacement of econometrics by
artificial intelligence, but the disciplined synthesis of both within theoretically informed adaptive
structures.
Future research may extend the present conceptual validation through large-scale empirical and
simulation-based testing across diverse macroeconomic environments.
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