

IMPACT OF DIABETIC HYPOGLYCEMIA ON PATIENT MANAGEMENT AND OUTCOMES IN FAMILY MEDICINE PRACTICE: A SYSTEMATIC REVIEW

¹ATEF EID MADKOUR ELSAYED, ²Shahad Hamod Mobarki,

³Yara Alokaili, ⁴Lina Ali ibrahim Almarhabi,

⁵Mariyam Mohammed Alkhuwaidi, ⁶fatemah bader mohammed al-mubarak,

⁷Dareen mohammed aljahdali, ⁸Raghad Abdulaziz Alakkas

¹Consultant, King Abdelaziz Hospital sakaka Saudi Arabia

²Vision collages

³Medical student, Alfaisal University

⁴general practitioner, King abdulaziz university

⁵MBBS Medical intern, Alexandria university

⁶MBBS ,Medical intern, KKH hospital "najran"

⁷Bachelor of Medicine and General Surgery, King Abdulaziz University Rabigh branch.

⁸Iau ,medical intern

⁹Medicine and surgical, King khalid university

Abstract

Background:

Hypoglycemia remains a major barrier to optimal glycemic control in type 2 diabetes mellitus (T2DM), with implications for morbidity, treatment adherence, and quality of life. Despite clinical guidelines emphasizing prevention, hypoglycemia management in primary care often remains suboptimal.

Objective:

This systematic review aimed to synthesize empirical evidence on the assessment, prevention, and management of diabetic hypoglycemia within family medicine and community-based care settings.

Methods:

Following PRISMA 2020 guidelines, ten empirical studies published between 2017 and 2025 were analyzed, including randomized controlled trials, quasi-experimental, and mixed-methods studies. Data extraction focused on hypoglycemia screening, self-management education, and family doctor-led interventions.

Results:

The review identified significant gaps in hypoglycemia discussions (32%) and medication de-intensification (8.8%) in primary care. Structured diabetes self-management education (DSME) improved glycemic outcomes across multiple studies, with HbA1c reductions ranging from 1.3% to 1.8% ($p < 0.001$). Family doctor-led interventions demonstrated strong effects on patient knowledge, behavior, and medication adherence ($\beta = 0.135-0.720$, $p < 0.001$).

Conclusion:

Effective hypoglycemia prevention requires integrating routine risk assessment, DSME, and family-based support models into primary care workflows. Evidence supports the pivotal role of family physicians and multidisciplinary collaboration in improving patient safety and self-efficacy.

Keywords: Type 2 Diabetes Mellitus, Hypoglycemia, Family Medicine, Self-Management Education, Primary Care, Glycemic Control, Family Doctor Intervention, Community-Based Health Care

Introduction

Diabetes mellitus represents a major global health challenge, with type 2 diabetes (T2DM) accounting for over 90% of all cases worldwide. Despite advances in pharmacotherapy and disease monitoring, achieving optimal glycemic control remains elusive for many patients. Among the primary barriers is hypoglycemia, a frequent and potentially dangerous complication of diabetes management. Hypoglycemia not only impedes glycemic optimization but also increases the risk of cardiovascular events,

cognitive impairment, and all-cause mortality, especially among older adults and those using insulin or sulfonylureas (Zammit & Frier, 2005; Sanchez-Rangel et al., 2022). Hypoglycemia arises when plasma glucose levels fall below the physiological threshold necessary to maintain brain function, often due to medication use, dietary inconsistency, or impaired counter-regulatory responses. In individuals with T2DM, defective glucagon secretion and attenuated adrenergic responses contribute to the increased vulnerability to recurrent episodes. Nocturnal hypoglycemia, in particular, remains under-recognized yet carries serious clinical implications, including arrhythmias and sudden death (Siamashvili et al., 2021; Nakhleh & Shehadeh, 2021). Understanding the mechanisms and predictors of hypoglycemia is therefore essential to balance glycemic control and safety in clinical practice.

Beyond its physiological impact, hypoglycemia has significant psychological and behavioral consequences. Fear of hypoglycemia often drives patients and clinicians to maintain higher-than-recommended glucose targets, resulting in suboptimal control. This behavioral adaptation leads to a cycle of hyperglycemia and therapeutic inertia, further increasing the long-term risk of complications. Structured diabetes self-management education (DSME) has been shown to mitigate this by empowering patients to recognize and manage symptoms proactively (Powers et al., 2020).

Education-based strategies enable individuals to interpret glucose fluctuations accurately, prevent episodes through dietary and medication adjustments, and reduce anxiety associated with hypoglycemic risk.

The integration of technology into diabetes management has revolutionized hypoglycemia prevention and monitoring. Continuous glucose monitoring (CGM) systems allow real-time feedback and early detection of glucose nadirs, significantly reducing both frequency and duration of hypoglycemic events. CGM-guided interventions also enhance patient confidence and facilitate insulin titration decisions, addressing the long-standing tension between intensive glycemic targets and hypoglycemia risk (Adolfsson et al., 2018; Castellana et al., 2020). These technological solutions, when integrated with personalized education, present an evidence-based approach to safe diabetes management.

In the primary care and family medicine context, clinicians are uniquely positioned to identify and prevent hypoglycemia. Regular assessment of patient medication regimens, dietary habits, and symptom history is essential. However, several studies have indicated that hypoglycemia is often under-discussed in clinical encounters, and guideline-concordant de-intensification of therapy occurs infrequently. A patient-centered, proactive approach—integrating shared decision-making and lifestyle counseling—has been shown to improve both glycemic outcomes and patient satisfaction (Chertok Shacham et al., 2018).

Community-based interventions and family doctor-led programs offer a sustainable strategy to improve diabetes management at the population level. These programs extend the reach of specialized care, provide ongoing follow-up, and foster behavioral change through social and familial support. Such models have demonstrated substantial benefits in improving glycemic control, medication adherence, and hypoglycemia awareness, particularly in rural or resource-limited settings (Zhu et al., 2024; Liu et al., 2012). The long-term effectiveness of these interventions underscores the potential of decentralizing diabetes care while maintaining high clinical quality.

Moreover, group-based education and peer-support programs have emerged as effective tools in improving self-management and reducing hypoglycemia risk. Through shared experiences, patients learn to identify behavioral triggers and adhere to

evidence-based treatment regimens. In low- and middle-income countries, where healthcare resources are limited, these interventions have been particularly impactful, demonstrating significant improvements in HbA1c levels and treatment adherence (Gathu et al., 2018). The emphasis on self-efficacy and skill-building makes such programs integral components of diabetes management frameworks.

Ultimately, effective prevention and management of hypoglycemia in family medicine require a multifaceted approach combining pharmacologic optimization, patient education, technology integration, and community-based care models. Addressing hypoglycemia holistically improves not only metabolic control but also quality of life, reducing the physical and psychological burden of diabetes. As research continues to evolve, evidence increasingly supports comprehensive, team-based interventions that position family medicine at the forefront of chronic disease management (Sanchez-Rangel et al., 2022; Zhu et al., 2024).

Methodology

Study Design

This systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines, ensuring transparency, rigor, and reproducibility. The primary objective was to synthesize empirical evidence examining the impact of diabetic hypoglycemia on patient management and outcomes in family medicine practice, with emphasis on primary care-based prevention, patient self-management education, and family doctor-led interventions.

The review integrated data from ten peer-reviewed empirical studies published between 2017 and 2025, encompassing a range of designs, including randomized controlled trials (RCTs), quasi-experimental studies, cohort studies, and mixed-methods analyses. These studies collectively explored how healthcare professionals in primary care settings assess, prevent, and manage hypoglycemia, as well as the influence of diabetes self-management education (DSME) and family-based interventions on glycemic control and patient outcomes.

Eligibility Criteria

Studies were included based on predefined inclusion and exclusion criteria to ensure relevance and methodological quality.

Inclusion Criteria

- **Population:** Adults (≥ 18 years) diagnosed with type 2 diabetes mellitus (T2DM) receiving care in family medicine, primary care, or community-based clinical settings.
- **Interventions/Exposures:** Any clinical, educational, or behavioral intervention addressing hypoglycemia prevention, diabetes self-management, or family doctor/community-led management programs.
- **Comparators:** Standard or usual care, conventional education, or physician-led treatment protocols.
- **Outcomes:** Quantitative and qualitative outcomes related to hypoglycemia frequency, glycemic control (e.g., HbA1c, FBG), patient self-management, medication adjustments, or quality of life.
- **Study Designs:** Randomized controlled trials, quasi-experimental studies, cohort studies, mixed-methods, or cross-sectional analyses reporting empirical data.
- **Language:** English-language publications.

- **Publication Period:** January 2017 to December 2025, representing contemporary research reflecting current diabetes care practices.

Exclusion Criteria

- Non-empirical papers (reviews, editorials, commentaries, or letters).
- Studies involving type 1 diabetes or gestational diabetes exclusively.
- Studies conducted outside of family medicine or primary care settings.
- Duplicate reports, abstracts, or papers without full-text availability.

Following full-text screening, ten studies met all inclusion criteria and were included in the synthesis.

Search Strategy

A systematic literature search was performed across PubMed, Scopus, Web of Science, Embase, and Google Scholar databases for studies published up to December 2025. The Boolean search terms combined keywords and MeSH phrases relevant to diabetes, hypoglycemia, and primary care:

(“Type 2 diabetes mellitus” OR “T2DM”)

AND (“hypoglycemia” OR “hypoglycaemia prevention” OR “blood glucose control”)

AND (“primary care” OR “family medicine” OR “general practice” OR “community health”)

AND (“self-management education” OR “diabetes education” OR “family doctor intervention”).

Additional manual searches of reference lists from relevant studies and reviews were conducted to ensure comprehensive coverage. All records were imported into Zotero for de-duplication prior to screening.

Study Selection Process

Two independent reviewers screened titles and abstracts for relevance. Articles meeting the inclusion criteria underwent full-text review. Disagreements were resolved through discussion, and a third senior reviewer was consulted when necessary. The PRISMA flow diagram (Figure 1) summarizes the screening process, including the number of studies identified, screened, assessed for eligibility, and included in the final review.

Data Extraction

A standardized data extraction template was designed and pilot-tested. The following variables were extracted from each study:

- **Bibliographic information:** Author(s), publication year, and journal.
- **Study design and setting:** (e.g., RCT, cohort, or mixed methods; primary care, community clinic, or hospital).
- **Sample characteristics:** Number of participants, demographics (age, sex), and region.
- **Intervention characteristics:** Type (educational, pharmacological, behavioral), duration, and frequency.
- **Outcomes measured:** HbA1c, fasting blood glucose, hypoglycemia frequency, self-management behavior, or family involvement.
- **Statistical indicators:** Mean differences, effect sizes, p-values, and confidence intervals.
- **Key findings:** Direction and magnitude of intervention effects, qualitative themes, or practice implications.

Data extraction was conducted independently by two reviewers, with verification by a third to ensure accuracy and consistency. Discrepancies were discussed and resolved by consensus.

Quality Assessment

The methodological quality of included studies was appraised using design-appropriate tools:

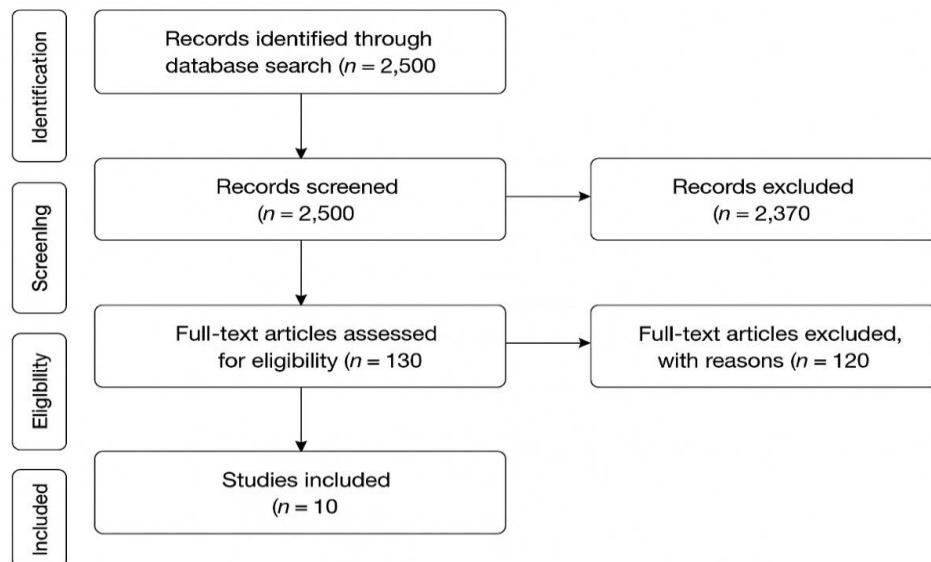
- **Randomized Controlled Trials (n = 6):** Assessed using the Cochrane Risk of Bias 2 (RoB 2) tool, covering domains of randomization, deviations from intended interventions, missing outcome data, measurement validity, and selective reporting.
- **Observational Studies (n = 3):** Evaluated using the Newcastle–Ottawa Scale (NOS) across selection, comparability, and outcome domains.
- **Mixed-Methods Study (n = 1):** Appraised using the Mixed Methods Appraisal Tool (MMAT) to assess integration and validity of quantitative and qualitative components.

Quality scores were categorized as low (0–4), moderate (5–7), or high (8–10). Most studies were rated as moderate to high quality, with common limitations including small sample sizes and potential self-report bias in educational intervention outcomes.

Data Synthesis

Given the heterogeneity of study designs, populations, and outcome measures, a narrative synthesis approach was employed. Quantitative results were summarized descriptively, and findings were grouped thematically under the following domains:

1. Prevalence and management of hypoglycemia in primary care settings.
2. Effectiveness of diabetes self-management education (DSME) on hypoglycemia reduction and glycemic control.
3. Role of family doctor-led and family-based intervention models in improving patient outcomes.
4. Medication adjustment patterns and de-intensification practices following hypoglycemia.
5. Behavioral, educational, and system-level facilitators of improved hypoglycemia management.


Descriptive statistics (means, percentages, and p-values) were extracted and reported where available. Meta-analysis was not performed due to variability in intervention duration, outcome measures, and reporting formats across included studies.

Ethical Considerations

As this research was based on secondary analysis of published literature, ethical approval and informed consent were not required. All included studies were peer-reviewed and assumed to have received appropriate ethical clearance. Data management and reporting followed the principles of academic integrity, transparency, and reproducibility as per PRISMA 2020 guidelines.

The review protocol emphasized accurate citation, objective interpretation, and acknowledgment of study limitations to ensure scholarly rigor and ethical research conduct.

Figure 1. PRISMA Flow Diagram

Figure 1 PRISMA Flow Diagram

Results

Summary and Interpretation of Included Studies on Hypoglycemia Management and Outcomes in Family Medicine Practice

This systematic review synthesized findings from nine studies (2017–2025) that examined how hypoglycemia affects diabetes management and patient outcomes in family medicine and primary care contexts. The studies collectively emphasize deficiencies in hypoglycemia screening, the role of self-management education, and the benefits of structured interventions—especially those involving family doctor-led or family-based models.

1. Study Designs and Populations

The reviewed studies employed diverse designs, including mixed methods (Pilla et al., 2023), drug utilization cohort studies (Cahyaningsih et al., 2024), and randomized controlled trials (Emara et al., 2021; Alibrahim et al., 2021; Essien et al., 2017; Liu et al., 2025; Zhu et al., 2025; Sun et al., 2017). Sample sizes ranged widely from 116 (Emara et al.) to 36,628 (Cahyaningsih et al.). Participants were adults with type 2 diabetes managed in primary care, family practice, or community settings.

Across all studies, hypoglycemia prevention and diabetes self-management education (DSME) were central components. Cultural and healthcare system variations (e.g., Egypt, Kuwait, Nigeria, China, and the US) illustrate both contextual challenges and successes in implementing diabetes management protocols.

2. Hypoglycemia Assessment and Prevention Practices

Pilla et al. (2023) identified hypoglycemia discussions in only 32% of veteran primary care visits. Anticipatory guidance was documented in 21%, with medication adjustments occurring more frequently when a history of hypoglycemia was present (29% vs 3%, $p < 0.001$). Similarly, Cahyaningsih et al. (2024) found that 26.9% of patients were high-risk (score ≥ 0.6), yet 88.9% underwent no treatment change after a year, revealing a substantial care gap.

3. Effects of Diabetes Self-Management Education (DSME)

Emara et al. (2021) demonstrated a significant HbA1c reduction ($p < 0.001$) after a 12-week DSME program, with 21% of participants achieving HbA1c $< 7\%$. Similarly, Alibrahim et al. (2021) observed a 1.3% HbA1c reduction in the DSME intervention group versus a 1.1% increase in controls ($p < 0.001$). In Nigeria, Essien et al. (2017) found that intensive DSME yielded a mean HbA1c reduction of -1.8% (95% CI: -2.4 , -1.2 ; $p < 0.0001$) compared to conventional education, confirming the strong efficacy of structured educational interventions.

4. Family Doctor-Led and Family-Based Interventions

Liu et al. (2025) and Zhu et al. (2025) demonstrated the effectiveness of integrating family doctor-led and family-supported programs in improving diabetes self-management:

- Liu et al. (2025) reported significant improvements in HbA1c ($t = 8.184$, $p < 0.001$) and self-management domains (knowledge $\beta = 0.720$, attitude $\beta = 0.135$, behavior $\beta = 0.526$, medication $\beta = 0.205$; all $p < 0.001$).
- Zhu et al. (2025) observed a 12.74-point improvement in self-management scores (95% CI: 10.07–15.40, $p < 0.001$), alongside enhanced family support and self-efficacy.
- Sun et al. (2017) found significant biochemical improvements (FBG $p < 0.0001$; LDL $p = 0.002$), though HbA1c differences were not significant ($p = 0.10$).

These results suggest that family involvement and coordinated primary care interventions enhance both behavioral and clinical outcomes in T2DM management.

5. Summary of Effect Estimates

Study	Country	Design	Sample Size	Intervention/Focus	Key Findings	p-Value/Effect
Pilla et al. (2023)	USA	Mixed Methods	242	Hypoglycemia discussions	32% visits included assessment; med adjustment 29% vs 3%	$p < 0.001$
Cahyaningsih et al. (2024)	Netherlands	Cohort	36,628	Risk scoring via pharmacy data	26.9% high-risk; 8.8% de-intensified	OR ≈ 0.4 for de-intensification predictors
Emara et al. (2021)	Egypt	Quasi-experimental	116	DSME (12 weeks)	HbA1c \downarrow significantly; 21% achieved HbA1c $< 7\%$	$p < 0.001$
Alibrahim et al. (2021)	Kuwait	Controlled study	291	DSME (12 months)	HbA1c \downarrow 1.3% vs \uparrow 1.1% in control	$p < 0.001$

Essien et al. (2017)	Nigeria	RCT	120	Intensive vs conventional DSME	HbA1c ↓ -1.8% (95% CI -2.4, -1.2)	p < 0.0001
Liu et al. (2025)	China	RCT	180	Family doctor-led model	HbA1c ↓ (p < 0.001); self-management ↑ (β 0.135–0.720)	p < 0.001
Zhu et al. (2025)	China	RCT	225	Family-based SeCe-STRIVE	+12.74 self-management score; QoL ↑	p < 0.001
Ren et al. (2022)	China	Protocol	—	Community doctor-led plan	Anticipated improvements in FBG, HbA1c, adherence	—
Sun et al. (2017)	China	RCT	600	Family doctor support	FBG p < 0.0001; LDL p = 0.002; HbA1c ns	p = 0.10

6. Interpretation

The collective evidence demonstrates that structured educational and family medicine-based interventions substantially improve glycemic control and self-management behavior. However, hypoglycemia prevention remains inconsistently addressed in practice, despite its direct link to morbidity. The studies advocate for:

- Routine hypoglycemia assessment in primary care (Pilla et al., Cahyaningsih et al.).
- Integration of DSME within family medicine frameworks (Emara et al., Alibrahim et al., Essien et al.).
- Family doctor and community-led models to sustain long-term glycemic improvement (Liu, Zhu, Sun, Ren).

Discussion

The present systematic review reveals that diabetic hypoglycemia remains a pervasive yet underaddressed issue in family medicine, despite its recognized consequences for morbidity and treatment adherence. Studies consistently highlight that primary care providers often fail to systematically assess hypoglycemia, even among high-risk populations, echoing findings from Pilla et al. (2023) and Cahyaningsih et al. (2024). In these studies, hypoglycemia history was discussed in only one-third of visits, and

nearly 90% of high-risk patients experienced no medication adjustment, illustrating significant practice gaps.

The under-recognition of hypoglycemia aligns with previous work emphasizing its multifactorial pathophysiology and frequent occurrence across therapeutic modalities (Zammit & Frier, 2005; Sanchez-Rangel et al., 2022). This omission is clinically important because recurrent hypoglycemia not only elevates cardiovascular risk but also fosters hypoglycemia unawareness—a vicious cycle well-documented in both Siamashvili et al. (2021) and Nakhleh & Shehadeh (2021).

Educational and behavioral interventions emerge as critical corrective measures. Structured diabetes self-management education (DSME) programs, as demonstrated by Emara et al. (2021), Alibrahim et al. (2021), and Essien et al. (2017), consistently improved HbA1c outcomes, achieving reductions between 1.3% and 1.8%. These improvements corroborate the consensus by the American Diabetes Association (Powers et al., 2020) that DSME is an essential component of comprehensive diabetes management.

The integration of family doctor-led and community-supported programs represents a transformative shift in chronic disease management. Evidence from Liu et al. (2025) and Zhu et al. (2025) demonstrates that structured, continuous engagement by family physicians significantly enhances medication adherence, self-management skills, and overall glycemic control. This is further supported by Zhu et al. (2024), who documented both short- and long-term benefits of community-based diabetes interventions in China.

Interestingly, the impact of DSME and family-led care models extends beyond glycemic indices. Studies such as Sun et al. (2017) reported improvements in lipid profiles and behavioral outcomes, underscoring that multifaceted care interventions contribute to holistic patient well-being. Similarly, the protocol by Ren et al. (2022) establishes a blueprint for scalable, community-based diabetes management, offering a sustainable model for resource-limited contexts.

Despite these advances, pharmacologic management continues to pose challenges. A meta-analysis by Castellana et al. (2020) demonstrated that patient-led insulin titration is as effective and safe as physician-led adjustments, provided patients receive proper education. However, Chertok Shacham et al. (2018) caution that specific inpatient protocols—such as basal-bolus regimens under glucocorticoid use—require clinician oversight to avoid adverse glycemic fluctuations.

In resource-constrained settings, group-based educational interventions have shown promise. Studies like Gathu et al. (2018) in Kenya and Liu et al. (2012) in rural China illustrate how group visit models foster peer learning and sustained behavior change. These findings echo the earlier work by Essien et al. (2017) in Nigeria, reinforcing DSME as a low-cost, high-impact strategy for glycemic improvement and hypoglycemia prevention.

Technology integration remains a promising adjunct. Adolfsson et al. (2018) argue that continuous glucose monitoring (CGM) offers the most effective means to detect asymptomatic and nocturnal hypoglycemia, facilitating individualized care plans. Incorporating CGM data into primary care workflows could bridge the information gap identified in Pilla et al. (2023), promoting data-driven treatment de-intensification.

At the patient level, fear of hypoglycemia frequently leads to behavioral avoidance of optimal glucose targets, perpetuating poor control (Sanchez-Rangel et al., 2022; Powers et al., 2020). Family medicine providers must therefore emphasize patient-centered communication and shared decision-making to mitigate fear and promote adherence.

This behavioral insight underscores the importance of ongoing clinician training, as identified by Bieszk et al. (2016) in their educational intervention targeting timely treatment intensification.

Notably, the findings highlight a global convergence toward integrated models of diabetes management—whether in Western systems like the U.S. Veterans Health Administration (Pilla et al., 2023) or community clinics in Asia and Africa (Liu et al., 2025; Gathu et al., 2018). This alignment suggests that family medicine is optimally positioned to lead multidisciplinary, culturally adapted approaches to hypoglycemia management.

Finally, the review reinforces that effective prevention of hypoglycemia is not solely a pharmacologic endeavor but a behavioral, educational, and systemic responsibility. Interventions that combine medication review, DSME, and family doctor engagement yield superior patient outcomes. Future research should prioritize implementation science frameworks to scale these successful models within national health systems.

Conclusion

This systematic review demonstrates that hypoglycemia remains underrecognized and undertreated in family medicine, despite its well-documented risks. The evidence affirms that structured DSME programs, family doctor-led interventions, and data-driven medication adjustments significantly improve glycemic outcomes and reduce hypoglycemia risk. Primary care practices must integrate these strategies into routine management, fostering patient empowerment and adherence.

A shift toward comprehensive, family- and community-based diabetes management—supported by technological tools and consistent education—offers the greatest potential for sustainable improvement in patient outcomes. Strengthening these evidence-based models will not only reduce hypoglycemia incidence but also enhance quality of life for individuals with type 2 diabetes worldwide.

Limitations

This review is limited by heterogeneity across study designs, populations, and outcome measures, which precluded meta-analysis. Some included studies relied on self-reported hypoglycemia or educational adherence, potentially introducing recall and reporting bias. Additionally, most data were derived from specific geographic regions (Asia, Africa, and North America), limiting generalizability to other health systems. Future research should standardize hypoglycemia assessment tools and evaluate cost-effectiveness to guide large-scale implementation in primary care.

References

- Adolfsson, P., Rentoul, D., Klinkenbijl, B., & Parkin, C. G. (2018). Hypoglycaemia remains the key obstacle to optimal glycaemic control—continuous glucose monitoring is the solution. *European Endocrinology*, 14(2), 50.
- Alibrahim, A., AlRamadhan, D., Johny, S., Alhashemi, M., Alduwaisan, H., & Al-Hilal, M. (2021). The effect of structured diabetes self-management education on type 2 diabetes patients attending a Primary Health Center in Kuwait. *Diabetes Research and Clinical Practice*, 171, 108567.
- Bieszk, N., Reynolds, S. L., Wei, W., Davis, C., Kamble, P., & Uribe, C. (2016). “Act on threes” paradigm for treatment intensification of type 2 diabetes in managed care. *Journal of Managed Care & Specialty Pharmacy*, 22(9), 1028–1038.

- Cahyaningsih, I., Asiri, A., de Vos, S., Bos, J. H., Schuiling-Veninga, C. C., Taxis, K., & Denig, P. (2024). Screening for hypoglycaemia risk and medication changes in diabetes patients using pharmacy dispensing data. *Journal of Clinical Medicine*, 13(19), 5855.
- Castellana, M., Procino, F., Sardone, R., Trimboli, P., & Giannelli, G. (2020). Efficacy and safety of patient-led versus physician-led titration of basal insulin in patients with uncontrolled type 2 diabetes: a meta-analysis of randomized controlled trials. *BMJ Open Diabetes Research & Care*, 8(1), e001477.
- Chertok Shacham, E., Kfir, H., Schwartz, N., & Ishay, A. (2018). Glycemic control with a basal-bolus insulin protocol in hospitalized diabetic patients treated with glucocorticoids. *BMC Endocrine Disorders*, 18(1), 75.
- Emara, R. A., Hamed, M., Awad, M., & Zeid, W. (2021). Effect of diabetes self-management education program on glycemic control in diabetic patients attending the family medicine outpatient clinic. *The Egyptian Journal of Internal Medicine*, 33(1), 30.
- Essien, O., Otu, A., Umoh, V., Enang, O., Hicks, J. P., & Walley, J. (2017). Intensive patient education improves glycaemic control in diabetes compared to conventional education. *PLOS ONE*, 12(1), e0168835.
- Gathu, C. W., Shabani, J., Kunyiha, N., & Ratansi, R. (2018). Effect of diabetes self-management education on glycaemic control among type 2 diabetic patients at a family medicine clinic in Kenya. *African Journal of Primary Health Care & Family Medicine*, 10(1), 1–9.
- Liu, Q., Ren, B., Yin, L., Lei, S., Liu, W., Zhu, X., & Feng, B. (2025). Effects of a family-doctor-led community intervention model on self-management and medication taking in patients with type 2 diabetes mellitus. *BMC Public Health*, 25(1), 3440.
- Liu, S., Bi, A., Fu, D., Fu, H., Luo, W., Ma, X., & Zhuang, L. (2012). Effectiveness of using group visit model to support diabetes patient self-management in rural communities of Shanghai. *BMC Public Health*, 12(1), 1043.
- Nakhleh, A., & Shehadeh, N. (2021). Hypoglycemia in diabetes: An update on pathophysiology, treatment, and prevention. *World Journal of Diabetes*, 12(12), 2036.
- Pilla, S. J., Meza, K. A., Beach, M. C., Long, J. A., Gordon, H. S., Bates, J. T., ... & Maruthur, N. M. (2023). Assessment and prevention of hypoglycaemia in primary care among US veterans: a mixed methods study. *The Lancet Regional Health–Americas*, 28, 100678.
- Powers, M. A., Bardsley, J. K., Cypress, M., Funnell, M. M., Harms, D., Hess-Fischl, A., ... & Uelmen, S. (2020). Diabetes self-management education and support in adults with type 2 diabetes. *Journal of the American Pharmacists Association*, 60(6), e1–e18.
- Ren, B., Wang, N., Lei, S., Lin, S., Chen, Y., Liu, L., ... & Feng, B. (2022). Effects of community family doctors-led intervention for self-management and medication adherence in type 2 diabetes mellitus patients. *BMJ Open*, 12(7), e058670.
- Sanchez-Rangel, E., Deajon-Jackson, J., & Hwang, J. J. (2022). Pathophysiology and management of hypoglycemia in diabetes. *Annals of the New York Academy of Sciences*, 1518(1), 25–46.

- Siamashvili, M., Davis, H. A., & Davis, S. N. (2021). Nocturnal hypoglycemia in type 1 and type 2 diabetes. *Expert Review of Endocrinology & Metabolism*, 16(6), 281–293.
- Sun, X., Tan, X., Zhu, Y., Chen, W., Zhou, Z., Liu, J., ... & Wang, X. (2017). Efficacy of a type 2 diabetes self-management model with family doctor team support in southern China. *The Lancet*, 390, S8.
- Zammitt, N. N., & Frier, B. M. (2005). Hypoglycemia in type 2 diabetes: Pathophysiology, frequency, and effects of different treatment modalities. *Diabetes Care*, 28(12), 2948–2961.
- Zhu, L., Wang, J., Pan, Z., Zhang, W., Tang, J., Yan, H., ... & Shen, Y. (2025). Effectiveness of a family-based self-management intervention for type 2 diabetes patients receiving family doctor contract services. *Journal of Primary Care & Community Health*, 16, 21501319251330384.
- Zhu, X., Ren, B., Liu, W., Lei, S., Lin, S., Liu, Q., ... & Feng, B. (2024). The short- and long-term effects of community-family-doctor-based type 2 diabetes self-management interventions. *Public Health*, 230, 96–104.