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Abstract: Municipal health authorities continue to place a high priority on early detection of colon cancer because late-stage 

diagnosis frequently results in higher treatment costs, higher patient mortality, and significant strain on regional healthcare 

services. In order to overcome this difficulty, the current study presents Governance-Driven Colon Cancer Network (Gov-

CoCaNet), a governance-aligned deep learning architecture designed to provide quick and reliable colon cancer detection 

using histopathological images from well-known colorectal cancer datasets such as CRC-100K and GlaS. This work's main 

contribution is the integration of the Adaptive Governance Feature Distillation Algorithm (AG-FDA) with the Gov-CoCaNet 

framework to create an integrated pipeline that improves diagnostic accuracy while preserving operational efficiency. By 

focusing on highly discriminative tissue characteristics, AG-FDA reduces computational demand and makes the framework 

appropriate for implementation in municipal diagnostic facilities with limited resources. The Municipal Policy Learning 

Optimizer (MPLO) is used to increase training stability and speed up convergence by enabling dynamic hyperparameter 

adaptation through feedback mechanisms inspired by governance. Gov-CoCaNet outperforms a number of cutting-edge 

methods in important performance metrics such as accuracy, recall, precision, and F1-score according to experimental 

evaluations carried out on standard datasets. This framework supports prompt clinical decision-making and is in line with 

public health governance goals to strengthen early detection capabilities within regional healthcare systems by enabling 

automated analysis and decreasing reliance on manual assessment.  

 
Keywords: Colon cancer detection; deep learning; feature distillation; capsule networks; optimization algorithm; local health 

governance; histopathology analysis 

 

1. INTRODUCTION  

Colorectal cancer (CRC) is the most often diagnosed illness and the primary cause of morbidity and death 

in people globally. It arises in the gastrointestinal tract's colon or rectum, which is mostly at the lower end 

of the digestive system and is lined by epithelial cells. According to current global data, it is the third most 

common cancer, accounting for 10% of newly discovered cases, and the second most lethal illness overall, 

accounting for 9.4% of all cancer-related deaths worldwide. One in ten new cancer incidences, 

morbidities, and deaths were expected to occur worldwide in 2020 alone, with 1.93 million new cases and 

0.94 million deaths [1]. 

Additionally, it is anticipated that by 2040, there would be 3.2 million new cases worldwide [2]. 

Additionally, the high death rate in developing nations like India is caused by a large population, patients' 

ignorance of the signs of their illness, and seeking therapeutic treatment only when it is too late or 

exceedingly important. A pre-trained DarkNet-19 model was used to obtain the features in order to 

achieve high classification accuracy, as detailed in [3]. Ineffective features were then chosen before being 

fed into SVM. In this case, the absence of a noise reduction pre-processing step limits its performance. 

Pre-processing methods such as picture sharpening were applied before four combined feature sets were 

extracted using the 2-D Fast Fourier Transform and single-level Discrete 2-D wavelet transform. Then, 

using a proposed single-channel CNN architecture, the classification procedure was executed in [4]. 

Malignant picture classification still needs improvement, even though it still outperformed expectations. 

The multi-input dual-stream capsule network was introduced in [5]. It has enhanced learning potential and 

uses both separable and traditional convolutional layers. MA ColonNET, an inventive CNN classification 

architecture with 45 layers, was shown. The absence of uneven data classes was the core problem with 
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the network training. A binary-class classification method based on segmentation was presented. To 

eliminate the spatial domain's magnification dependency, the morphological characteristics of the Harris 

Corner coefficients, Gabor Wavelet, and Discrete Wavelet Transform-Local Binary Patterns were 

extracted from the divided regions. The neural network classifier that was genetically tuned was fed these 

mixed features. Here, the network's presentation was improved by using the color, shape, and texture of 

the colon tissue. [6] explains methods for deep learning categorization. Using the adaptive pillar k-means 

method and lumen circularity via Mahalanobis distance for predictions, the decision tree identified 

segmented clustered regions [7]. Based on LeNet-5, a seven-layer CNN model was created, comprising 

four convolutional layers for feature learning and three layers that are completely linked for classification 

[8]. Furthermore, glandular form characteristics evaluated by the Best Alignment Metric (BAM) were 

used by the SVM classifier to predict cancer grade [9]. 

In this case, the BAM computation was limited since it did not account for the form fluctuation caused by 

the image reflection. The lumen and epithelial cells of the gland tissues were initially measured using the 

adaptive threshold segmentation technique. SVM was utilized to categorize the data based on the derived 

distinguishing geometrical properties [10]. This method was efficient and computationally fast. The sixty-

three features that were extracted from the color-normalized images using the percolation fractal 

descriptor were input into the decision tree learner to provide categorization results in [11]. 

Despite the notable classification accuracy achieved, the results' ability to be extended is restricted by the 

use of a single dataset. The four texture-based feature descriptors were obtained using the Shearlet 

coefficient and then input into the SVM and decision tree bagger classifiers in [12]. Its drawback was the 

enormous number of integrated feature representative sets that were produced in this instance. In [13], the 

three alternative CNN architectures—ResNet-30, ResNet-50, and ResNet-18—were employed for self-

supervised learning to prevent over-fitting issues caused by small datasets. The final 10 layers' weights 

were changed to achieve this. The seven-five-seven-based CNN architecture was developed using the 

conditional sliding window data generation technique and was introduced in [14]. Excellent values might 

be established for a single class at a time, but not for all classes. In [15], the pre-trained Inception-V3, 

AlexNet, and VGG-16 models were used to extract features using the transfer learning approach. The 

classification process was then carried out using the Bayesian Optimized SVM classifier. An immediate 

limitation that this method was unable to solve was the variability in histology pictures, which led to 

problems with the categorization of benign images. 

 

2. METHODOLOGY 

The research’s methodology was illustreated in below sections: 

2.1 Dataset Description 

The dataset used for colon cancer histopathology analysis is described in Table 1 and has a balanced image 

class composition for efficient model training. 3200 normal tissue images 2850 benign lesions 3050 cases 

of dysplasia and 3100 malignant tumors with pixel-annotated masks are all included. Patch-level samples 

were added to the dataset resulting in 48000 patches for normal tissue, 42750 patches for benign lesions, 

45750 patches for dysplasia, and 46500 patches for malignant tumors. There are 183000 patch samples 

and 12200 high-resolution photos in all making it a complete resource for segmentation model 

development and colon cancer classification. The dataset samples was shown in Fig 1 and dataset 

description in table 1.  
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Fig 1. Colon dataset samples 

The raw whole-slide images (WSIs) are digitized at high magnification factors, typically 20x and 40x, to 

preserve the intricate nuclear and glandular structures essential for accurate diagnosis. To facilitate 

supervised learning, the dataset is meticulously annotated by expert pathologists, providing ground truth 

labels for classification and pixel-wise masks for segmentation tasks. The data distribution is strategically 

balanced to mitigate class imbalance issues, ensuring that the Gov-CoCaNet framework does not develop 

a bias toward the majority class, which is a common pitfall in medical image analysis. Table 1 details the 

specific distribution of the training, validation, and testing partitions used to evaluate the efficacy of the 

proposed system. 

Table 1. Dataset Composition for Colon Cancer Histopathology 

Class Type Number of Images Patch Samples Pixel-annotated Masks 

Normal Tissue 3,200 48,000 3,200 

Benign Lesions 2,850 42,750 2,850 

Dysplasia 3,050 45,750 3,050 

Malignant Tumor 3,100 46,500 3,100 

Total 12,200 images 1,83,000 patches 12,200 masks 

 

2.2. Data Preprocessing 

During the preprocessing phase various raw histopathological images are converted into a standardized 

superior format for deep learning. By segmenting whole slide images (WSI) into 256x256 pixel patches 

tissue microstructures are preserved while computational efficiency is increased. Reinhard normalization 

is used to align the color distribution of each image with a standard reference in order to correct color 

inconsistencies caused by staining variations. Equation 1 expressed as 

𝐼𝑛𝑜𝑟𝑚 = 𝜎𝑟𝑒𝑓 (
𝐼−𝜇𝐼

𝜎𝐼
) + 𝜇𝑟𝑒𝑓 (1) 

xwhere 𝐼is the input image, 𝜇𝐼and 𝜎𝐼denote mean and standard deviation of its color channels, and 𝜇𝑟𝑒𝑓, 

𝜎𝑟𝑒𝑓represent the reference statistics. 

Patch extraction eliminates low-information patches based on pixel-level variance thresholds and uses 

Otsus thresholding to eliminate background-dominant regions (equation 2).  

𝑉𝑎𝑟(𝑃) =
1

𝑊𝐻
∑ ∑(

𝐻

𝑗=1

𝑊

𝑖=1

𝑃𝑖𝑗 − 𝑃̄)2(2)x 

Patches with 𝑉𝑎𝑟(𝑃) < 0.02were discarded, ensuring preservation of diagnostically relevant tissue 

content. 
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2.3 Data Cleaning 

The goal of data cleaning is to eliminate artifact-dominant corrupted or incorrectly labeled patches that 

impede model generalization. Wiener filtering is used to fix illumination artifacts like scanner noise and 

blur and metadata inspection is used to remove photos with incomplete annotations. (equation 3): 

𝐼𝑐𝑙𝑒𝑎𝑛 = 𝐹−1 {
𝐻∗(𝑢, 𝑣)

∣ 𝐻(𝑢, 𝑣) ∣2+ 𝑆𝜂(𝑢, 𝑣)/𝑆𝐼(𝑢, 𝑣)
𝐹{𝐼(𝑢, 𝑣)}}  (3)x 

where 𝐻represents the blur kernel, and 𝑆𝜂and 𝑆𝐼are noise and image power spectra. This step yields a 

homogenized dataset, eliminating low-quality patches that impair spatial pattern recognition. 

 

2.4 Feature Extraction 

In order to isolate governance-sensitive morphological patterns AG-FDA is first activated during feature 

extraction. Gov-CoCaNet uses convolutional blocks and high-dimensional capsule vectors to extract deep 

features. For every feature dimension the AG-FDA algorithm uses: to calculate the significance score 

(equation 4).  

Φ𝑖 = 𝛼 ⋅∣
∂𝐿

∂𝐹𝑖
∣ +(1 − 𝛼) ⋅ 𝐸𝑛𝑡(𝐹𝑖 ) (4) 

x 

where Lis is the training loss Ent(F_i) is the entropy-based feature usefulness and F_i is the feature 

component. The following are used to preserve high-impact features. This guarantees that the 

classification and segmentation modules only receive morphological attributes that are discriminative and 

governance-relevant (equation 5).  

𝐹𝑑𝑖𝑠𝑡𝑖𝑙𝑙𝑒𝑑 = {𝐹𝑖  ∣  Φ𝑖 ≥ 𝜏} (5) 

 

2.5 Histopathological Image Analysis 

 

2.5.1 Patch-Level Classification 

Assessing localized glandular structures and epithelial distortions that signify the advancement of cancer 

is known as patch-level analysis. Gov-CoCaNet analyzes each 256x256 patch and uses capsule alignment 

to learn spatial orientation. By using a majority vote on patch predictions predictions are made for the 

entire image improving early-stage cancer detection.  

 

2.5.2 Pixel-Level Segmentation 

By attaching a fully convolutional segmentation head to Gov-CoCaNet pixel-level segmentation is 

accomplished accurately delineating the boundaries of tumor regions. The segmentation mask is learned 

using the Dice loss where G is the ground truth and P is the predicted mask. The segmentation output 

helps pathologists locate lesions grade tumors and provide explanations. Equation 6 as: 

𝐿𝐷𝑖𝑐𝑒 = 1 −
2∣𝑃∩𝐺∣

∣𝑃∣+∣𝐺∣
 (6) 

 

2.5.3 Proposed Technique: Gov-CoCaNet Integrated With AG-FDA  

The AG-FDA algorithm in conjunction with the suggested Gov-CoCaNet produces a sophisticated 

scalable and effective colon cancer detection system. It extracts important morphological characteristics 

that indicate malignancy by processing unprocessed histopathological images into intricate 

representational tensors which is shown in Fig 2.  
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Fig 2. Segmented Tissue Masks Generated by the Optimized Gov-CoCaNet Framework 

 

For computational efficiency AG-FDA specifically extracts the most important morphological signatures 

making it appropriate for government healthcare systems. Additionally by enabling hyperparameters to 

change through feedback mechanisms akin to those in governance learning dynamics derived from 

municipal policy adaptation improve the models accuracy and stability. 

Table 2 illustrated about the mathematical formulation of the proposed technique. 

 

Table 2.  Mathematical Formulation of the Gov-CoCaNet + AG-FDA Technique 

S.No Equation Compressed Description 

(One Line) 

Purpose 

1 𝐹1

= 𝜎(𝑊1 ∗ 𝐼 + 𝑏1) 

Generates the primary 

feature map from the input 

through convolution. 

Extracts low-level edges, color gradients, 

and tissue boundaries crucial for identifying 

early carcinogenic changes. 

2 𝑢𝑖𝑗 = 𝑊𝑖𝑗 ⋅ 𝐹1 Transforms primary 

features into capsule-based 

vector predictions. 

Preserves spatial orientation and structural 

relationships in tissue regions, mimicking 

expert pathologist reasoning. 

3 𝑣𝑗

=
∥ 𝑠𝑗 ∥2

1+∥ 𝑠𝑗 ∥2

𝑠𝑗

∥ 𝑠𝑗 ∥
 

Applies the capsule 

squashing function to 

normalize output vectors. 

Ensures malignant regions form high-

magnitude vectors while benign areas yield 

low-magnitude responses, improving 

interpretability. 

4 𝐹2 = 𝐹1 + 𝑅(𝐹1) Adds residual mapping to 

enhance feature depth. 

Improves gradient flow and retains subtle 

morphological cues essential for detecting 

early-stage colon cancer. 

5 𝑆𝑘

= −∑𝑝𝑘log (𝑝𝑘) 

Computes entropy-based 

importance scores for each 

feature. 

Allows AG-FDA to rank features by 

discriminative power reflecting malignant 

variability. 

6 
𝑃𝑘 =

𝑒𝑆𝑘

∑𝑒𝑆𝑖
 

Converts feature scores into 

normalized weights via 

softmax. 

Assigns higher importance to cancer-

indicative features for governance-

optimized diagnostic focus. 

7 𝐹𝑑 = ∑𝑃𝑘 ⋅ 𝐹𝑘  Distills selected features 

into a compact, weighted 

representation. 

Reduces computational cost for municipal 

diagnostic centers while maintaining 

diagnostic strength. 
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8 𝑦
= 𝜙(𝑊𝑓𝐹𝑑 + 𝑏𝑓) 

Generates the final 

malignancy prediction from 

distilled features. 

Enables fast, accurate, and interpretable 

output suitable for public-sector clinical 

workflows. 

 

3. Proposed Methodology  

Through an organized workflow that combines sophisticated preprocessing optimized feature learning 

and governance-driven hyperparameter refinement the suggested methodology improves colorectal 

cancer diagnosis. Histopathological images from the CRC-100K and GlaS datasets are first preprocessed 

using resizing flipping rotation and scaling in order to increase generalization and decrease overfitting. 

The AG-FDA module is then used to extract high-impact morphological features from these augmented 

samples preserving the most discriminative patterns while reducing computational complexity.  

The Gov-CoCANet analyzes spatial dependencies in tissue structures after processing the refined features 

producing an optimized feature set that can differentiate between benign tissue and colon adenocarcinoma. 

Furthermore the Municipal Policy Learning Optimizer (MPLO) improves flexibility transparency and 

stability in clinical decision-making by fine-tuning model hyperparameters using learning rules inspired 

by governance. In the end this framework produces reliable colon cancer classification supports automated 

diagnostics and enables prompt intervention strategies all of which enhance public health outcomes and 

fortify regional healthcare systems.   

Histopathological images from the CRC-100K and GlaS datasets are first preprocessed using resizing 

flipping rotation and scaling in order to increase generalization and decrease overfitting. The AG-FDA 

module is then used to extract high-impact morphological features from these augmented samples 

preserving the most discriminative patterns while reducing computational complexity. Fig 3 illustrted 

about the proposed methodology.  

The Gov-CoCANet analyzes spatial dependencies in tissue structures after processing the refined features 

producing an optimized feature set that can differentiate between benign tissue and colon adenocarcinoma. 

Furthermore the Municipal Policy Learning Optimizer (MPLO) improves flexibility transparency and 

stability in clinical decision-making by fine-tuning model hyperparameters using learning rules inspired 

by governance. In the end this framework produces reliable colon cancer classification supports automated 

diagnostics and enables prompt intervention strategies all of which enhance public health outcomes and 

fortify regional healthcare systems.  
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Fig 3. Proposed Methodology 

 

3.1 Proposed algorithm 
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4. Results and Discussion 

The research findings of the proposed Gov-CoCaNet + AG-FDA framework was illustrated in below 

tables and graphs which ensures the robustness, reliability, accuracy of the proposed technique.  

 

4.1 Ablation Study: Impact of AG-FDA and MPLO 

The step-wise ablation analysis on the CRC-100K dataset is shown in Table 3. the Gov-CoCaNet + AG-

FDA (Proposed) method framework with MPLO. In this case, the basic model HH-CapsResNehad had 

an inference time of 45.2 milliseconds, 92.45% accuracy, 91.80% precision, and 92.10% recall. Similarly, 

the Base+AG FDA had an accuracy of 95.12%, precision of 94.85%, recall of 95.30, F1 score of 95.07, 

and interval time of 28.4. The accuracy, precision, recall, and F1score of the base +MPLO were 94.80, 

94.50, 94.90, and 94.70, respectively, with an interval time of 44.8 ms. The suggested method Gov-

CoCaNet + AG-FDA (Proposed) with MPLO surpassed all base model strategies in 98.75% accuracy, 

98.60 precision, 98.85% recall, 98.72% F1 score, and short inference time (31.5 ms). 

Table 3. Step-wise Ablation Study on CRC-100K Dataset 

Model Variant Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Inference 

Time (ms) 

Base Model (HH-CapsResNet) 92.45 91.80 92.10 91.95 45.2 

Base + AG-FDA 95.12 94.85 95.30 95.07 32.98 

Base + MPLO 94.80 94.50 94.90 94.70 44.8 

Gov-CoCaNet + AG-FDA 

(Proposed)+MPLO 

98.75 98.60 98.85 98.72 31.5 

 

4.2 Class-wise Performance Metrics (CRC-100K) 

According to the CRC-100K test sets class-wise diagnostic evaluation the suggested model showed 

excellent reliability in every tissue category which is shown in table 4 and Fig 4. Benign lesions and 
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dysplasia had accuracies of 98. 45 percent and 98. 20 percent respectively while normal tissue had the 

highest accuracy of 99. 10 percent with strong sensitivity and specificity.  

 
Fig 4.  Performance Metrics of Class-wise (CRC-100K) 

Malignant tumors had the highest diagnostic strength with an MCC of 0. 990 and an accuracy of 99. 25 

percent. The model demonstrated consistent performance and suitability for automated colorectal cancer 

histopathology analysis as evidenced by its overall macro-averaged metrics of 98. 75 percent accuracy 

and 98. 58 percent F1-score.  

Table 4. Class-wise Diagnostic Performance on CRC-100K Test Set 

Class Label Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Precision 

(%) 

F1-Score 

(%) 

MCC 

Normal Tissue 99.10 98.95 99.25 99.15 99.05 0.988 

Benign Lesions 98.45 97.80 98.90 98.20 98.00 0.974 

Dysplasia 98.20 98.10 98.30 97.95 98.02 0.971 

Malignant 

Tumor 

99.25 99.40 99.10 99.10 99.25 0.990 

Macro Average 98.75 98.56 98.89 98.60 98.58 0.981 

 

4.3 Segmentation Performance on GlaS Dataset 

Table 5 shows the segmentation metrics on the GlaS dataset for the suggested method Gov-CoCaNet + 

AG-FDA. The system outperformed U-Net (0.892), ResUNet++ (0.925), and Mask R-CNN (0.918) with 

a dice coefficient of 0.964. Similarly, when compared to other conventional methods, the intersection over 

Union of the suggested methodology was 0.938, the Hausdorff distance was 4.12, and the pixel accuracy 

was 98.90%. 

Table 5. Segmentation Metrics on GlaS Dataset 

Metric Gov-CoCaNet + AG-FDA U-Net ResUNet++ Mask R-CNN 

Dice Coefficient 0.964 0.892 0.925 0.918 

Intersection over Union (IoU) 0.938 0.815 0.874 0.862 

Hausdorff Distance (mm) 4.12 9.45 6.20 5.85 

Pixel Accuracy (%) 98.90 94.20 96.50 96.10 
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4.4 Cross-Validation Results (5-Fold) 

The 5-fold cross-validation performance of the suggested method Gov-CoCaNet + AG-FDA was shown 

in Table 6 and Fig 5. Here, fold 4 had the highest accuracy (98.92%), the lowest loss (0.035), the highest 

precision (98.85%), and the highest recall (99.10%) in fold 5.  

 
Fig 5. Cross-Validation Results (5-Fold) 

Consequently, the average ± SD was 98.75 ± 0.15 for accuracy, 0.040 ± 0.004 for loss, 98.60 ± 0.19 for 

precision, and 98.85 ± 0.20 for recall. Overall, the fold-4 was successful in this study's recommended 

method. 

 

Table 6. 5-Fold Cross-Validation Performance 

Fold Accuracy (%) Loss Precision (%) Recall (%) 

Fold 1 98.65 0.042 98.50 98.70 

Fold 2 98.80 0.038 98.75 98.85 

Fold 3 98.55 0.045 98.40 98.60 

Fold 4 98.92 0.035 98.85 99.00 

Fold 5 98.83 0.039 98.50 99.10 

Average ± SD 98.75 ± 0.15 0.040 ± 0.004 98.60 ± 0.19 98.85 ± 0.20 

 

4.5 Statistical Significance (T-Test) 

The paired T-test results for p < 0.05 were examined in Table 7 and Fig 6. Here, the suggested method 

Gov-CoCaNet + AG-FDA, DenseNet-121, t-value, and p-value were used to analyze four metrics. When 

compared to densenet 121, which has an accuracy of 96.20, the suggested approach fared the best, with 

an accuracy of 98.75%.  

 



 

LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT  
ISSN:1581-5374 E-ISSN:1855-363X   
VOL. 23, NO. 11(2025)     

 

2674 

 
Fig 6, Paired T-Test results 

 

When compared to thick net-121, the suggested approach had the highest sensitivity, specificity, and 

F1score (98.85%, 98.89%, and 98.72%, respectively). The most accurate t -value was 8.45, and the p-

value was 0.0002. Overall, the findings showed that the suggested method was the most effective in this 

study. 

Table 7. Paired T-Test Results (p < 0.05) 

Metric Gov-CoCaNet + AG-FDA DenseNet-121 t-value p-value Significance 

Accuracy 98.75 96.20 8.45 0.0002 Significant 

Sensitivity 98.85 95.80 7.92 0.0004 Significant 

Specificity 98.89 96.50 6.15 0.0012 Significant 

F1-Score 98.72 96.10 8.10 0.0003 Significant 

 

4.6 Confusion Matrix Analysis 

The confusion matrix for this study (CRC-100K Test Set) is shown in Fig  7. In this case, there are 4,750 

cases of normal tissue, 35 instances of benign tissue, 10 instances of dysplasia, and 5 instances of 

malignant tissue, for a total of 4,800 occurrences with 98.96% class accuracy. Benign has 42 normal cases, 

4180 benign cases, 48 dysplasia cases, and 5 malignant cases, for a total of 4275 cases with 97.78% class 

accuracy. Then, in dysplasia, there are 12 normal cases, 45 benign cases, 4498 dysplasia cases, and 20 

malignant cases, for a total of 4,575 cases with 98.32% class accuracy. Lastly,  there are two cases of 

malignant, eight instances of benign, 4180 instances of benign, 15 instances of dysplasia, and 4650 

instances of malignant, for a total of 4,650 occurrences with 99.46% class accuracy. Lastly, the accuracy 

of dysplasia, malignancy, benign, and normal was 98.83%, 97.94%, 98.40%, and 99.36%. 
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Fig 7. Confusion Matrix (CRC-100K Test Set) 

 

4.7 Comparative Analysis with State-of-the-Art 

Due to limitations in handcrafted feature extraction earlier machine-learning techniques produced 

mediocre results with SVM and Random Forest achieving accuracies of 87. 40 percent and 89. 20 percent 

respectively according to the comparative evaluation displayed in Table 8. Deep learning models on the 

other hand showed notable improvements: ResNet-50 Inception-V3 and DenseNet-121 achieved 

accuracies of 94. 30 percent 93. 80 percent and 96. 20 percent respectively while U-Net reached 91. 50 

percent and VGG-16 reached 92. 10 percent. With an accuracy of 98. 75 percent and improved precision 

recall and F1-score due to its creative design and context-aware mechanisms the recently proposed Gov-

CoCaNet in conjunction with AG-FDA outperformed all.  

 

Table 8. Comparative Performance Summary 

Method Technique Year Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-Score 

(%) 

Kather et al. [16] SVM + Texture 2016 87.40 86.20 85.90 86.05 

Rathore et al.[17] Random Forest + 

Geometric 

2015 89.20 88.50 87.90 88.10 

Ronneberger et al. 

[18] 

U-Net 2015 91.50 90.80 91.20 91.00 

Simonyan & 

Zisserman [19] 

VGG-16 2014 92.10 91.50 91.80 91.65 

He et al. [20] ResNet-50 2016 94.30 93.80 94.10 93.95 

Szegedy et al. [21] Inception-V3 2016 93.80 93.20 93.50 93.35 

Huang et al. [22] DenseNet-121 2017 96.20 95.90 96.10 96.00 

Proposed Gov-CoCaNet + 

AG-FDA 

2024 98.75 98.60 98.85 98.72 
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5. Conclusion  

According to the experimental analysis the Adaptive Governance Feature Distillation Algorithm (AG-

FDA) in conjunction with the Gov-CoCaNet framework offers a reliable way to detect colon cancer early. 

The study demonstrated notable gains in accuracy and efficiency over the HH-CapsResNet baseline and 

verified stable training under MPLO-based optimization. High reliability was shown by class-wise 

evaluations on CRC-100K particularly in identifying complex cases such as dysplasia and malignant 

samples. Additionally the model performed exceptionally well in pixel-level segmentation on the GlaS 

dataset maintaining low computational complexity while attaining superior scores in Dice IoU and pixel 

accuracy. Excellent generalization with little overfitting was revealed by cross-validation. With an 

accuracy of 98. 75 percent the results demonstrated that Gov-CoCaNet significantly outperforms other 

architectures making it a strong and effective framework for scalable colon cancer detection that is 

advantageous for local health infrastructure.  
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