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Abstract— Contagious and non-contagious illnesses represent a major contributor to global death rates, with their
varied and complex manifestations often hindering accurate evaluation and classification of disease severity.
Different geographic regions face unique obstacles in addressing these health issues. This research employs four
advanced AI-powered decision support frameworks to enhance diagnostic accuracy through medical imaging.
Initially, a decision support method based on entropy has been utilized, wherein entropy is calculated either at the
pixel or regional level from medical images (like MRI or CT scans) to pinpoint zones of diagnostic uncertainty.
Secondly, a similarity-based diagnostic model is utilized to determine disease presence by analyzing the input
imagery. Thirdly, a decision-making model incorporating the TOPSIS (Technique for Order Preference by
Similarity to Ideal Solution) method, integrated with AI algorithms, is employed to accurately classify the specific
disease type, utilizing images from diverse imaging techniques. Fourth, an AHP (Analytic Hierarchy Process)
framework is used to support diagnostic decisions through multi-criteria analysis, aiding in selecting the most
suitable diagnosis. All computational processes and algorithms are executed in Python. Hypothetical datasets are
used to demonstrate the implementation of these models in a medical diagnostic context. Visual aids are
incorporated to enhance clarity and emphasize the significance and impact of the results.
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Introduction
Throughout the previous ten years, there has been a significant escalation in the evolution of

machine intelligence, especially within the discipline of profound neural computation [1,2].
Traditionally, deep neural architectures have fundamentally revolutionized the manner in which
automated systems identify structures, render judgments, and assimilate information, achieving
this at unparalleled velocities. These developments have facilitated the mechanization of
numerous visual recognition operations [3]. Visual computing encompasses a collection of
methodologies that empower digital entities to interpret and evaluate information derived from
the tangible environment in the form of imagery and video streams. This progression is
predominantly attributed to the implementation of complex layered network classifiers
engineered to decode and categorize graphical stimuli responsibilities that formerly demanded
considerable human proficiency. However, forecasting the efficacy of these architectures
remains intricate and is not universally applicable. The benchmarks employed to gauge the
effectiveness of deep computational models fluctuate considerably depending on the particular
niche of visual interpretation and the specific objective of the framework [4,5]. This
inconsistency becomes even more pronounced in narrowly defined fields like Clinical Imaging
Partitioning (CIP), a pivotal scholarly domain dedicated to the recognition and demarcation of
critical components within diagnostic scans. These focal areas termed as Zones of Clinical
Significance (ZCSs) are essential for health evaluation and curative strategy formulation.
Achieving these goals using scanning techniques such as Magnetic Resonance Imaging (MRI),
Computed Tomography (CT), or radiographic imaging necessitates meticulous partitioning to
diagnose illnesses, monitor pathological progression, and devise suitable therapeutic pathways.
The intricacy of CIP surpasses simple image features like pixel density and structural
complexity; it also encompasses vital medical decision-making processes [6]. In opposition to
standard vision computing scenarios where mistakes may lead to negligible setbacks errors in
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clinical imaging partitioning can result in substantial consequences like inaccurate diagnoses or
unsuitable treatments, thus directly influencing patient outcomes. Hence, neural-based models
utilized for CIP must be meticulously validated with assessment mechanisms tailored to their
precision in isolating and outlining essential medical regions. The proliferation of intelligent
computing and neural processing has notably advanced this sector, expediting the automation of
challenging visual interpretation challenges. In the realm of CIP [7,8], such innovations are
foundational to the autonomous extraction and annotation of clinical ZCSs, such as anatomical
structures or disease markers like neoplasms. Nonetheless, appraising the effectiveness of these
methodologies is seldom straightforward. The scrutiny procedures must be credible, resilient,
and sufficiently rigorous for integration into healthcare environments. At present, medical
experts especially diagnostic radiologists and histopathologists are beginning to recognize the
revolutionary capability of deep neural-based CIP methodologies. When deployed as
autonomous diagnostic utilities, these systems can greatly facilitate operations including
anomaly detection, therapy planning, risk analysis, and minimizing image interpretation duration
[9,10]. For instance, within radiological practice, deep neural tools can be instructed to partition
and emphasize ZCSs in imaging studies like tumors or anomalies in CT and MRI scans, thereby
assisting radiologists in quicker and more precise clinical evaluations. Similarly, in
histopathological workflows, such models support accurate tissue categorization, thereby aiding
pathologists in making critical assessments. The assimilation of these systems into routine
clinical procedures boosts diagnostic fidelity and reduces the time expended on visual data
analysis, allowing specialists to dedicate their efforts to detailed investigations. Since CIP
methodologies directly influence vital healthcare decisions, confirming their evaluation is both
exact and consistent is of utmost importance [11]. A system that performs exceptionally well
under experimental conditions might yield suboptimal outcomes in practical medical
applications, where variability and consequence levels are substantially elevated. Consequently,
it is essential that these systems experience comprehensive verification and validation prior to
real-world integration [12]. This involves the selection of performance indicators that accurately
represent the model’s competence across heterogeneous patient cohorts, diagnostic instruments,
and noisy clinical environments. Alarmingly, an emerging issue highlights that certain scholars
selectively report favorable performance indicators, sometimes approaching flawless results,
while disregarding or omitting metrics that more truthfully reveal system limitations. These
habits subvert the objectivity of performance assessment and can deceive clinical adopters. There
are high-performing models on cleaned data, and scientists may emphasize trivial objectives or
metrics that elevate performance artificially, excluding those that unveil algorithmic failure. This
can be especially harmful to practitioners grounded in these models for life-critical medical
choices. Though neural computation-based CIP models [13,14] hold great potential in the area of
radiology, pathology, and allied medical sciences, it is important that they are tested in an open
manner to establish trustworthiness as well as functional safety. Four state-of-the-art AI-driven
analytical support systems have been incorporated in this work to enhance diagnostic accuracy
using clinical imaging. There is first an uncertainty-based approach in which entropy is
calculated at the clinical image level (MRI or CT) either at voxel or segmented area level to
detect areas with uncertain diagnostic interpretation. There is secondly a similarity-based model
for analysis that detects the presence of pathologies by analyzing the provided imaging material.
Thirdly, to efficiently categorize disease variants among different imaging types, a decision-
support mechanism based on the Technique for Order Preference by Similarity to Ideal Solution
(TOPSIS) and integrated with smart algorithms is utilized. Lastly, the Analytic Hierarchy
Process (AHP) is utilized for multi-parameter analysis, which assists in selecting the most
suitable diagnostic inference. All the computational procedures are coded using the Python
computer language, and example data sets are provided to demonstrate the application of the
models in practice diagnostics. Visual plots are also presented to facilitate understanding and



LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENTISSN:1581-5374 E-ISSN:1855-363XVOL. 23, NO. S6(2025)

6899

demonstrate relevance and implications of results.

Related Works
This section gives a broad overview of prevalent artificial intelligence and neural network

methods applied in healthcare image segmentation. It tries to give a detailed description of
paradigms shifting, from the conventional AI classifiers to the latest developments in neural
architectures that support automation of medical image interpretation. Importantly, this section
mentions common problems such as class imbalance, less model flexibility, and excessive
computation cost, all of which hinder the performance of the aforementioned. Through the
thorough analysis of the inherent defects of the hitherto used methods, this section offers a
platform for constructing stronger architectures with potential uses in clinic. Ding et al. [16]
introduced the FTransCNN model, a fusion schema that merges convolutional neural processes
(CNNs) and transformer modules into one, acquiring the strengths of both using a fuzzy logic
structure. In this framework, CNN and transformer are concurrent attribute miners: the
transformer is responsible for global attribute representations using channel-based attention, and
the CNN is responsible for local patterns using spatial-based attention. Although this architecture
enables thorough macro and micro feature integration, its two-way split nature and imprecise
integration mechanism result in high processing overhead, which might confine its usage in low-
resource real-time systems. Kaushal et al. [17] stressed the importance of formulating an
efficient segmentation schedule with deep networks to enable detection of significant anatomy
areas towards rapid partitioning. To this end, they proposed an integrated approach that
combines the discriminative power of traditional CNNs with the segmentation power of SI
algorithms. Their system includes modules like FCM, K-means clustering, and PSO-based
optimizations along with CNNs, all aimed at improving segmentation accuracy and execution
time. Through effectively integrating legacy clustering with state-of-the-art AI building blocks,
the mass use of many unique algorithms introduces complexity that can undo adaptability and
scalability in actual-world scenarios. To this end, they proposed an integrated approach that
combines the discriminative power of traditional CNNs with the segmentation power of SI
algorithms. Their system includes modules like FCM, K-means clustering, and PSO-based
optimizations along with CNNs, all aimed at improving segmentation accuracy and execution
time. Through effectively integrating legacy clustering with state-of-the-art AI building blocks,
the mass use of many unique algorithms introduces complexity that can undo adaptability and
scalability in actual-world scenarios.Narayan et al. [18] examined the essential contribution of
anatomical delineation in improving multiple functionalities of medical imaging, encompassing
diagnostic analytics, surgical strategizing, and intraoperative navigation. Their assessment
reviews both the evolution and the state-of-the-art frameworks in medical imaging segmentation,
tracing advancements across successive technological phases. Nonetheless, a conceivable
drawback of their survey is its broad scope, which may trade off detailed examination of
particular segmentation intricacies and techniques. Chin et al. [19] proposed the Fuzzy DBNet,
an architecture combining a dual-butterfly configuration with a Fuzzy Atrous Spatial Pyramid
Pooling (ASPP) module to refine segmentation performance in multi-angle image datasets.
Evaluations on varied databases, such as multi-class pill images and thoracic radiographs,
yielded Dice similarity coefficients of 95.05\% and 97.05\%, respectively, indicating robust
partitioning capabilities. Still, the reliance on parallel data pipelines considerably escalates
system complexity and operational demands. Shi et al. [20] unveiled a segmentation strategy
utilizing a multichannel convolutional structure integrated with a fuzzy dynamic contour model.
The initial step applies the superpixel-based SLIC algorithm to divide and annotate medical
imagery into compact zones. These zones then serve as training data for the CNN to enhance the
delineation of organ peripheries. Further refinement is achieved through fuzzy contour modeling,
initiated from the superpixel outputs. Although this amalgamated method effectively unites
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CNNs with fuzzy paradigms to elevate segmentation performance, its dependence on initial
superpixel demarcation may propagate foundational inaccuracies into the conclusive results.
Nagaraja et al. [21] pursued the augmentation of diagnostic precision for internal organs and
correlated conditions, such as cerebrovascular incidents, by presenting an innovative angle using
multimodal diagnostic imaging. Their technique employs an image fusion construct predicated
on a freshly formulated hybrid meta-heuristic protocol. The fusion commences with a W-FDCuT
transformation, decomposing visuals into high and low-frequency segments, thereby enabling
superior assimilation of information from various imaging sources to reinforce system reliability.
Ahammed et al. [22] developed an automated hair removal methodology utilizing morphological
operations specifically the Black-Hat technique alongside an inpainting mechanism for
processing dermatological lesion imagery. To diminish distortions and visual smudges, a
Gaussian smoothing filter is applied, succeeded by automatic GrabCut segmentation to delineate
pathological areas. Latent attributes within skin images are retrieved via the Gray Level Co-
occurrence Matrix (GLCM) coupled with a range of statistical features, improving the analysis
and classification of dermatological data.

Definition 1:Let X = {αj : j = 1, . . . ,n} be the universe of discourse with attributes {εi}mi=1 and
corresponding value sets {ði}mi=1. A Neutrosophic Hypersoft Set (NHSS) ϒA is defined by the
mapping H : Πmi= 1 ði→℘(X) and consists of ordered triples υA(εi) = {(α,Ta(α), Ia(α),Fa(α)) : α ∈
X}, where Ta(α), Ia(α),Fa(α) ∈ [0,1] represent truth, indeterminacy, and falsity membership
degrees respectively, satisfying 0 ≤ Ta(α)+Ia(α)+Fa(α) ≤ 3 for all α∈ X [1].
Definition 2: Let ϒA and ΨB be two NHSS defined on the same universe X and attribute sets.
The Hamming distance between these two sets is given by:
dsNHSS(ϒA,ΨB)=1/3mΣmi=1Σnj=1(|TA(εi)(αj)−TB(εi)(αj)|+|IA(εi)(αj)−IB(εi)(αj)|+|FA(εi)(αj)−FB(εi)(αj)|
). This formula represents the average sum of absolute differences between the truth,
indeterminacy, and falsity degrees for all elements and all attributes [1].
Definition 3: Define ϒA and ΨB and their Similarity Measure (SM) via HD for NHSS over a set
U:S′IFHSS(ϒA,ΨB) =1/1+dsIFHSS(ΓA,ΛB) [1].
Application I
In the evolving landscape of medical diagnostics, a new methodology has been developed to
enhance diagnostic accuracy and provide deeper clinical insights, particularly in brain imaging.
This research introduces a novel application of Neutrosophic Hypersoft Set (NHSS) entropy to
identify uncertain regions within grayscale medical images such as MRI or CT scans. The
starting point of our study involved collecting real patient image from the Kaggle platform, a
widely recognized repository of medical image datasets. These images, typically in standard
grayscale format, were first transformed into the NHSS domain a three-valued logical framework
that decomposes each pixel into components of truth (T), indeterminacy (I), and falsity (F). In
this representation, the truth component is directly based on the pixel intensity, which often
corresponds to the likelihood of pathological structures such as tumors. The indeterminacy is
computed by local variance or standard deviation within the neighborhood window and is blur or
diagnostic fuzziness level. The falsity is found as a complement to truth, i.e., absence or negation
of the perceived feature. Then, the NHSS entropy for each pixel is computed using a proprietary
algorithm (Algorithm I). This measure of entropy quantifies classification uncertainty by adding
up the information in the T, I, and F values. Refer to Fig. 1 for more. High entropy at a pixel
would suggest that the pixel is surrounded by contradictory or uncertain information that usually
happens around tumor boundaries or overlapping tissue intensity regions. Low entropy would
suggest clearer, certain regions. The resulting entropy map of this pixel-level analysis is then
graphed as a heatmap where the light regions indicate the uncertain or diagnostically
indeterminate areas of the image. As additional boost to clinical utility, the same entropy map is
thresholded to generate a binary mask. Divided as output, the same in reality guides the
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radiologist to regions of uncertainty and facilitates wiser, better-informed diagnosis. The step,
apart from upgrading ultimate end picture quality to be made available for medical
interpretation, introduces into the procedure the glaringly absent medical doubt quantification
mode of medicine greatly missing even from current practice state. In clinical application, the
approach can be applied to mark soft tumors, serve as a pre-processing step to AI computations
in generating attention maps, or support clinical decision-making by outlining regions of low
diagnostic confidence. In its application alongside Python in open-source software packages like
OpenCV and NumPy, the NHSS entropy-based approach is pragmatic and scalable and hence a
significant resource in current radiological practice. Finally, the loop is finally completed
between uncertainty theory modeling and actual application of that in medical imaging by
offering an effective way to enhance precision and reliability of computer-aided diagnosis.
Application II
In the research domain of computer-assisted medical diagnosis, the article presents a new,
NHSS-based method of diagnosing pneumonia from chest X-ray images and similarity
calculation. The general purpose is to diagnose the infection status of suspected patients through
a formal diagnostic process via image-based similarity calculation and clinical inference by
algorithm (Algorithm II). Diagnosis begins with pulling chest X-ray images of the suspected
pneumonia and comparing them to a reference image for pneumonia from an officially
diagnosed case on a local system, which was originally retrieved from the open Kaggle data set
at https://www.kaggle.com/datasets/paultimothymooney/chest-xray-pneumonia. The gray-scale
images are first computed in NHSS form, with each pixel intensity being assigned to a triplet of
degrees of truth, indeterminacy, and falsity primary elements of the NHSS model. Using Python,
a distance and similarity algorithm is implemented to compare each suspected patient’s NHSS
profile with that of the confirmed pneumonia reference. The analysis yields the following NHSS
profile for the patient: (0.5136, 0.9999, 0.4864), which represents the degrees of certainty (truth),
uncertainty (indeterminacy), and falsity, respectively. These values are then compared against
pre-defined NHSS profiles for common lung conditions such as “Normal,” “Tumor,”
“Pneumonia,” and “COVID-19,” each stored as reference vectors derived from expert-labeled
datasets. The similarity scores computed between the patient’s profile and these conditions are as
follows: Normal: 0.2525, Tumor: 0.2953, Pneumonia: 0.3368, and COVID-19: 0.3328. As the
highest similarity score corresponds to Pneumonia, the system confirms this as the final
diagnosis. Visualization using matplotlib allows radiologists or AI agents to overlay diagnosis
results directly on the image, supporting interpretability and decision-making which can be seen
in Fig. 2. This pipeline demonstrates a reliable, interpretable, and scalable method for image-
based diagnosis, effectively merging fuzzy theory with advanced image processing. Future
enhancements may include learning disease profiles dynamically from large medical datasets,
integrating deep learning for region-based NHSS segmentation, and improving diagnostic
granularity using patch-wise analysis. This fusion of NHSS and artificial intelligence marks a
significant step forward in precision diagnostics and intelligent healthcare delivery.

Figure 1. Uncertainty Zones Around Tumor Edges and Overlapping Tissue Intensity Areas
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 Algorithm 1: {NHSS Entropy-Based Medical Image Analysis}
Require: Grayscale medical image I∈ [0,255]m×n
Ensure: Entropy map E, Uncertainty mask M
1: Normalize the image: IN←I/255.0
2: Compute truth membership: T ←IN
3: Initialize indeterminacy matrix Im←0m×n
4: Set kernel size k←5
5: Pad IN using reflection padding: P←Pad(IN,k//2)
6: for each pixel (i, j) in IN do
7: Extract window: W←P[i : i+k, j : j+k]
8: Compute local standard deviation: Im[i, j]←std(W)
9: end for
10: Normalize indeterminacy: Im←Im/max(Im+ε)
11: Compute falsity: F ←1−T
12: Initialize entropy map: E ←0m×n
13: for each pixel (i, j) do
14: t ←T[i, j], iv←Im[i, j], f ←F[i, j]
15: s←t +iv+ f
16: if s > 1 then
17: (t, iv, f )←(t/s, iv/s, f /s)
Normalize if total exceeds 1
18: end if
19: Compute entropy:

E[i, j]←−t log2(t)−iv log2(iv)− f log2( f )
20: Handle zeros by defining x log2(x) = 0 when x = 0
21: end for
22: Normalize entropy map: E ←E/max(E)
23: Set threshold τ (e.g., τ = 0.7)
24: for each pixel (i, j) do
25: if E[i, j] > τ then
26: M[i, j]←1
27: else
28: M[i, j]←0
29: end if
30: end for
31: return E, M

 Algorithm 2 : {Diagnostic NHSS Similarity Measure for Medical Image}
1: Input:Medical image I, Reference NHSS Profiles {(Ti, Ii,Fi)}ni=1
2: Output: Diagnosis label D
Step 1: Image Preprocessing
3: Resize I to 256×256
4: Normalize pixel values: I ←I/255
Step 2: Compute NHSS Triple of Input Image
5: T ←mean(I)
6: Istd←std(I)
7: Inorm←Istd/(Istd +ε)
8: F ←1−T
9: NHSSinput←(T, Inorm,F)
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Step 3: Define Similarity Measure Function
10: function NHSS-SIMILARITY((T1, I1,F1), (T2, I2,F2))
11: sim(x,y)← xy/(x+y−xy)
Avoid division by zero
12: return 1/3[sim(T1,T2)+sim(I1, I2)+sim(F1,F2)]
13: end function
Step 4: Compute Similarity Scores
14: for all diagnosis labels di with reference profile (Ti, Ii,Fi) do
15: Si←NHSS-SIMILARITY((T, Inorm,F), (Ti, Ii,Fi))
16: end for
Step 5: Determine Diagnosis
17: D←argmaxi Si
18: return D

 Algorithm 3: {NHSS-TOPSIS for Medical Image Diagnosis}
1: Input:Medical Image I, Disease NHSS Profiles {(Ti, Ii,Fi)}ni=1, WeightsmW = [wT ,wI ,wF]
2: Output: Diagnosis Label D
Step 1: Image Preprocessing
3: Resize I to 256×256
4: Normalize image: I ←I/255
Step 2: Compute NHSS Triple of Patient Image
5: Tp←mean(I)
6: Ip←std(I)/(std(I)+ε)
7: Fp←1−Tp
8: Patient NHSS←(Tp, Ip,Fp)
Step 3: Construct Decision Matrix
9: Let M ← matrix of size n×3 with rows (Ti, Ii,Fi) from disease profiles
Step 4: Normalize Decision Matrix
10: for j = 1 to 3 do
11: M[:, j]←M[:, j]/√( Σni=1M[i, j]2)
12: end for
Step 5: ApplyWeights
13: for i = 1 to n do
14: M[i, :]←M[i, :]・W
15: end for
Step 6: Determine Ideal and Anti-Ideal Solutions
16: A+ ←max(M, axis = 0)
▷ Ideal NHSS
17: A− ←min(M, axis = 0)
▷ Anti-Ideal NHSS
Step 7: Compute Euclidean Distances
18: for i = 1 to n do
19: d+i←√(Σ3j=1(M[i, j]−A+[ j])2)
20: d-i←√(Σ3j=1(M[i, j]−A-[ j])2)
21: end for
Step 8: Calculate Closeness Coefficients
22: for i = 1 to n do
23: CCi ←d-i/d-i +d+i
24: end for
Step 9: Determine Final Diagnosis
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25:D←argmaxi (CCi)
26:return D

 Algorithm 4: {NHSS-AHP Based Diagnosis from Medical Image}Input: Medical image pathOutput: Diagnosis label and ranking of alternativesProcedure NHSS_AHP_Diagnosis(image_path)1: image ← Load grayscale image from image_path2: Resize image to 256 × 256 pixels3:Normalize pixel values: image ← image / 255.0Step 1: NHSS Feature Extraction4: T ← mean(image)5:std ← standard deviation(image)6:I ← std / (std + ε)7: F ← 1 − T8:patient_nhss ← [T, I, F]Step 2: Define Alternative Diagnoses (each as NHSS vector)9:diagnoses ← {‘Tumor’:[0.85, 0.1, 0.05], ‘Normal’:[0.4, 0.2, 0.4], ‘Inflammation’:[0.6, 0.25,0.15]}Step 3: Construct Pairwise Comparison Matrix10:For i = 1 to n11: For j = 1 to n12: If i ≠ j then13: dist_i ← EuclideanDistance(patient_nhss, diagnoses[i])14: dist_j ← EuclideanDistance(patient_nhss, diagnoses[j])15: matrix[i][j] ← dist_j / dist_i16: Else17: matrix[i][j] ← 118: EndIf19: EndFor20: EndForStep 4: Compute AHP Weights21: Compute eigenvalues and eigenvectors of matrix22: weights ← principal eigenvector normalized
Step 5: Select Best Diagnosis23:best_index ← argmax(weights)24:diagnosis ← diagnoses[best_index]25:Return diagnosis, weights
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Figure 2: Final Diagnosis Figure 3: Final Diagnosis

Application III
This methodology introduces a structured approach for disease identification by integrating
NHSS theory with the TOPSIS multi-criteria decision-making algorithm (Algorithm III). This
method is designed to deal explicitly with the uncertainty, vagueness, and incomplete
information often found in medical imaging. The process begins with acquiring a grayscale
medical image (such as a chest X-ray), which is resized and normalized to extract meaningful
pixel-level features. These pixel intensities are converted into a three-part NHSS triple
representing the degrees of truth (T), indeterminacy (I), and falsity (F) thereby modeling how
confidently a region in the image supports or contradicts a disease profile while accounting for
uncertainty. Once the patient’s NHSS triple is computed, it is compared against pre-defined
NHSS profiles for several disease categories, such as “Normal,” “Tumor,” “Pneumonia,” and
“COVID-19.” Each of these disease categories is modeled as a vector of (T, I, F) values based on
prior clinical knowledge or expert-labeled datasets. With these profiles, a decision matrix is
constructed, and TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) is
applied. This method first normalizes the matrix and applies weights to each criterion (e.g., 0.4
for truth, 0.3 for indeterminacy, and 0.3 for falsity). It then computes the ideal (most desirable)
and anti-ideal (least desirable) solutions across all disease profiles. By calculating the Euclidean
distance of the patient's NHSS triple from both the ideal and anti-ideal solutions, a closeness
coefficient is derived for each disease profile. This score reflects how closely the patient’s
condition aligns with each diagnostic category. The disease profile with the highest closeness
score is selected as the final diagnosis. In one real case application of this technique, the image
analysis produced a patient NHSS triple of [0.5051, 0.9999, 0.4949], signifying moderate truth
and falsity values with high indeterminacy a common scenario in medical uncertainty. When
compared using the TOPSIS methodology, the closeness coefficients for various disease profiles
were as follows: Normal: 0.7134, Tumor: 0.5132, Pneumonia: 0.5921, and COVID-19: 0.1671.
The highest score of 0.7134 indicated the greatest similarity to the “Normal” profile, resulting in
the final diagnostic decision: NORMAL, which can be seen in Fig. 3. This NHSS-TOPSIS
framework offers a powerful and interpretable AI-driven diagnostic tool. It allows researchers
and clinicians to evaluate medical images systematically by transforming uncertain image
features into logical triplets, comparing them against established disease norms, and ranking
outcomes based on their mathematical proximity to the ideal health condition. The method is
flexible, scalable, and especially valuable in developing mobile health apps or AI assistants for
use in low-resource clinical environments where rapid and reliable image-based diagnosis is
crucial. Future extensions could incorporate deep learning models to dynamically learn disease
profiles from large datasets and use region-based NHSS feature mapping to enhance diagnostic
specificity.
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Application IV
A medical image was analyzed using a novel diagnostic approach that combines the
Neutrosophic Hypersoft Set (NHSS) framework with the Analytic Hierarchy Process (AHP) to
support multi-criteria decision-making using the algorithm (Algorithm IV). The process began
with image preprocessing, where the raw image was converted to grayscale, resized, and
normalized to enhance consistency. From this processed image, key neutrosophic features were
extracted specifically, Truth (T) representing similarity to normal tissue, Indeterminacy (I)
capturing uncertainty in the image structure, and Falsity (F) denoting deviation from typical
patterns. These features serve as the diagnostic fingerprint for the patient. In this case, the
extracted NHSS vector was compared with reference profiles for three diagnostic alternatives:
Tumor, Normal, and Inflammation, each described by expert-defined T, I, F values. A pairwise
comparison matrix was constructed using neutrosophic distance, which objectively measured
how close the patient’s profile was to each diagnosis. This matrix replaced subjective judgment
with mathematically grounded similarity assessments. By applying the eigenvector method to the
matrix, priority weights for each diagnosis were calculated. The last decision was arrived at for
these weights and resulted in the diagnosed prediction as Normal, ranked in the order of
alternatives as: Normal (0.3939), Inflammation (0.3368), and Tumor (0.2693). Even though the
result is a healthy indication, the relatively close scores reveal some diagnostic doubt shown by a
high indeterminacy value for the patient's image. This procedure not only made the decision-
making process more efficient but also provided a decisive reason behind every diagnosis option.
The NHSS-AHP methodology facilitates integration into clinical decision-making systems as an
interpretable and structured method of assessing uncertain or borderline medical cases from
image data. It can assist radiologists in confirming diagnoses or referring complex cases for
further evaluation.

Conclusion
This study is a valuable addition to medical diagnostics literature with three advanced AI-based
methodologies developed for processing medical images and thus enhancing accuracy in
infectious disease diagnosis. This combination of computational intelligence and Multi-Criteria
Decision-Making (MCDM) models gives a new vision to diagnostic challenges. Utilization of
four independent decision support systems including entropy-based uncertainty localization,
similarity-based diagnostic assessment, AI-based TOPSIS classification, and AHP-based multi-
criteria analysis presents an integrated and module-based image-based diagnostic process. All
the approaches are implemented in Python and cross-validated with simulated data,
supplemented with visualizations emphasizing the interpretability and usability of the findings.
They not only bridge the gap between computational approaches and clinical use but also open
up scopes for more efficient and responsive diagnosis. Future research will include the coupling
of these AI models with wearable health sensors and real-time analytics to facilitate early disease
detection and personalized treatment regimens. Furthermore, federated learning frameworks will
facilitate training of models on decentralized data without jeopardizing patient data privacy.
Multidisciplinary research involving machine learning, bioinformatics, clinical sciences, and
public health will be critical in scaling and implementing these smart systems in actual real-
world resource-constrained health settings.
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