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Abstract 

Face spoofing remains a significant vulnerability in facial biometric systems, where attackers employ techniques 

such as high-resolution photo prints, video replays, 3D masks, and even AI-generated deepfakes to deceive 

liveness detection modules. To counter these evolving threats, this study introduces STDL-Net, a Spatio-

Temporal Deep Learning Network designed to detect facial spoofing by integrating both spatial depth cues and 

temporal behavioral features. STDL-Net employs a dual-stream architecture that processes RGB and 3D depth 

maps using 3D convolutional neural networks (3D-CNNs) to capture geometric textures and facial contours, 
which are inherently difficult to forge. Simultaneously, it models time-dependent facial dynamics like blinking, 

subtle head movements, and micro-expressions using Long Short-Term Memory (LSTM) networks, enabling 

detection of both static and dynamic spoofing attempts. Attention mechanisms further refine the model's focus 

on discriminative regions of interest, such as the eye and mouth areas. Experimental validation was conducted on 

a custom dataset acquired using stereo vision and structured-light sensors (e.g., Intel RealSense, Microsoft 

Kinect), including a balanced mix of real and spoofed samples. The proposed STDL-Net achieved high 

robustness, yielding 97.3% accuracy, a 0.982 AUC, and low error rates across diverse spoofing categories. These 

results underscore the effectiveness of combining depth sensing with temporal learning, offering a 

comprehensive and scalable solution for next-generation biometric security systems. 
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1. Introduction 

Biometric verification systems, especially those based on facial recognition, have emerged as 

superior alternatives to traditional password-, PIN-, and card-based authentication methods 

due to their non-intrusiveness and usability [1]. Historically, identity verification depended on 

physical documents or possessions,but modern biometric technologies now leverage inherent 

traits—such as fingerprints, iris scans, and facial features—for robust authentication [2]. 

Among these, facial recognition stands out for ease of use and broad adoption in sectors 

including mobile banking, access control, and surveillance [3].Despite its advantages, facial 

biometrics is increasingly susceptible to presentation attacks, including printed photos, 

replayed videos, 3D masks, and even AI-generated deepfakes, which can easily deceive 

systems based on static 2D analysis [4]. The lack of depth perception and temporal analysis in 

these systems results in high false acceptance rates when faced with sophisticated spoofing 

attacks [5]. Conventional anti-spoofing approaches are inadequate in addressing advanced 

spoofing threats because they typically rely on static texture or motion cues alone. This results 

in poor generalization across different spoof types and operational conditions.To address 

these limitations, this study proposes STDL-Net, a Spatio-Temporal Deep Learning Network 

designed to integrate: Spatial information via 3D-CNN extraction from RGB and depth data 

to capture geometric facial features, Temporal dynamics using LSTM layers to model 

involuntary actions such as eye blinking and micro-expressions,Attention mechanisms to 
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focus learning on the most informative facial regions,A robust classification pipeline capable 

of distinguishing real users from spoof types including print, replay, 3D mask, and deepfake. 

In this work (Phase 3), STDL-Net extends these models by fusing depth and motion streams 

through an asymmetric encoder-decoder with multi-attention flows. Extensive experiments 

using RGB-depth video sequences show that STDL-Net outperforms both unimodal and uni-

task baselines under varied environmental and spoof conditions. 

 

2. Related Work 

According to the authors’ understanding, the literature on facial liveness detection has grown 

in recent years, yet few works provide a complete and comparative analysis of multi-modal 

approaches integrating spatial and temporal cues. Most methods rely either on static image 

features or individual temporal indicators, often lacking robustness under variable 

environmental conditions. 

The method proposed in [1] uses Face Mesh to extract 468 facial landmarks for liveness 

detection. The model adapts well to dynamic backgrounds, illumination changes, and non-

frontal facial orientations, achieving a reported precision of 97.23%. However, it is sensitive 

to occlusions and fails under extreme head poses. In [2], a Multi-task Cascade Convolutional 

Neural Network (MTCNN) is used for real-time detection and classification of identity 

spoofing. The system shows improved performance in criminal identification applications, 

with an accuracy of 98%, although it lacks depth modeling for 3D mask detection. To address 

image quality degradation in spoofed inputs, the authors of [3] reframe the detection problem 

as a binary quality classification task. Using a facial similarity score-based pseudo-labeling 

strategy, they reach a performance of 94%, highlighting the role of image fidelity in spoof 

detection. In [4], a Deep Siamese Network is trained on image pairs (real–real and real–fake) 

using Joint Bayesian, Contrastive, and Softmax loss to learn face authenticity. This pairing 

mechanism helps the network differentiate spoof artifacts by directly comparing spatial 

similarity between real and fake inputs. An innovative application of facial liveness detection 

in secure e-voting systems is presented in [5], integrating deep learning with blockchain and 

anonymous signatures. Though the main goal is secure polling, the system demonstrates the 

growing importance of liveness detection in digital identity verification scenarios.The authors 

in [6] propose a patch-based CNN using the VGG-16 architecture for detecting localized 

spoofing cues. Evaluated on CASIA-FASD and REPLAY-ATTACK datasets, the method 

achieves an EER of 0.67% and HTER of 0.71%, showing strong results in known 

environments but limited generalization to unseen spoof types.A lightweight CNN for facial 

recognition in extreme conditions—such as underwater, avalanche, or mining environments—

is explored in [7]. This architecture enhances facial feature extraction even in low-visibility or 

high-noise contexts. However, it is not primarily designed for spoofing 

countermeasures.Despite these advances, no current literature comprehensively addresses 

multi-modal fusion of depth and motion features for robust spoof detection. Most studies are 

restricted to RGB data or specific attack types and do not sufficiently analyze generalization 

performance across spoof modalities (e.g., print, video, 3D mask, and deepfake). 

 

3. Proposed Methodology 

3.1 System Model 

The proposed system model(Figure 3.1), STDL-Net (3D Ai-Temporal Deep Learning 

Network), is a hybrid framework designed for robust face anti-spoofing by leveraging both 

spatial and temporal features from input video sequences.  
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The process begins with depth map acquisition using video input, followed by depth 

normalization and face detection. A 3D Convolutional Neural Network (3D CNN) is 

employed to extract depth-aware spatial features, while temporal features are derived from 

frame sequences. These features are then passed into a dual-stream 3D CNN or ConvLSTM 

network, which processes both spatial geometry and temporal dynamics. An attention 

mechanism is integrated to emphasize critical facial regions, and a depth estimation module 

aids in discriminating real facial structures from spoof artifacts. Finally, a classification head 

combines the RGB, depth, and temporal data to produce a liveness prediction, identifying 

whether the face is real or spoofed. The system achieves high spoof detection accuracy by 

integrating depth cues, motion patterns, and attention-driven feature selection. 

 

 
Figure 3.1: Overall Architecture for 3D face anti-spoofing using STDL-Net 

 

3.1.1 Video Input Segmentation 

The foundation of the proposed face liveness detection framework begins with the acquisition 

of continuous video data captured using an RGB-D camera setup. This sensor configuration 

provides both color (RGB) frames and corresponding depth maps, allowing the system to 

utilize visual texture and geometric surface information simultaneously. The dual-modality 

video capture provides significant advantages in distinguishing real human faces from 

spoofing artifacts such as printed photos, video replays, and 3D masks. While RGB frames 

help detect texture-based inconsistencies, depth maps offer cues about facial geometry that are 

difficult to spoof convincingly. 

Once the video stream is captured, it is represented as a sequence of synchronized frames: 

  V = {F₁, F₂, F₃, ..., Fₜ}, 

where T is the total number of frames. Each frame Fₜ consists of an RGB image Rₜ ∈  ℝᴴˣᵂˣ³ 

and a corresponding depth map Dₜ ∈ℝᴴˣᵂ. To ensure effective analysis of motion-related 

cues, the video is partitioned into overlapping segments of fixed temporal length, typically w 

= 5 frames per segment. 
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This segmentation allows the model to capture short-term temporal changes that are critical 

for liveness detection, such as eye blinks, lip movements, and micro-expressions. Let w 

denote the segment window size. Then, each segment Sᵢ can be formally defined as: 

    Sᵢ = {Fᵢ, Fᵢ₊₁, Fᵢ₊₂, ..., Fᵢ₊w₋₁},   for i = 1, 2, ..., T − w + 1. 

This overlapping window approach increases the granularity of motion analysis and provides 

richer temporal context to the subsequent 3D convolutional and recurrent layers. It is 

particularly effective in handling variations in facial behavior and spoofing strategies that 

exploit temporal sparsity. The algorithm is as follows 

Let: 

  V = {F₁, F₂, ..., Fₜ}           // Input video with T frames 

  w ∈  ℤ⁺                          // Segment window size (e.g., w = 5) 

  S = {}                          // List to hold segments 

For i = 1 to T − w + 1: 

  Sᵢ = {Fᵢ, Fᵢ₊₁, ..., Fᵢ₊w₋₁} 

Return S = {S₁, S₂, ..., Sₜ₋w₊₁} 

 

3.1.2 Depth Map Acquisition 

Depth map acquisition is a critical component of the proposed face liveness detection system, 

as it enables the extraction of three-dimensional geometric features that cannot be replicated 

by two-dimensional spoofing mediums such as photographs or mobile screens. The input to 

this module is the segmented video S = {S₁, S₂, ..., Sₖ}, where each segment Sᵢ contains w 

consecutive frames Fₜ = {Rₜ, Dₜ}. The goal is to extract or estimate reliable depth maps Dₜ 

corresponding to each RGB frame Rₜ. 

In cases where RGB-D cameras are used, such as Intel RealSense or ZED stereo cameras, 

depth maps are directly obtained from the hardware. For stereo-based systems, depth 

estimation is computed using disparity between left and right image pairs based on the 

pinhole camera model: 

D(x, y) = (B × f) / (d(x, y) + ε) 

where B is the baseline distance between the stereo cameras, f is the focal length, and ε is a 

small constant to avoid division by zero. This formula reconstructs the 3D structure of the 

face by calculating the distance of each pixel from the camera plane. Alternatively, if 

structured-light or time-of-flight sensors are used, depth maps are provided directly without 

requiring stereo matching. 

Depth acquisition provides an additional biometric modality that complements RGB features 

and improves the robustness of the liveness detection pipeline, especially under spoofing 

conditions where the depth profile remains flat or irregular. The algorithm is as follows 

Given: 

Algorithm 1: 

  Fₜ = {Rₜ, Dₜ}, where t = 1 to T 

  (Lₜ, Rₜ) - Left and Right stereo image pair (if depth not directly available) 

Output: 

  Depth maps D = {D₁, D₂, ..., Dₜ} 

For each frame t = 1 to T: 

  If a depth sensor is available: 

    Dₜ = SensorOutput(t) 

  Else if stereo images are available: 

d(x, y) = StereoDisparity(Lₜ, Rₜ) 

Dₜ(x, y) = (B × f) / (d(x, y) + ε) 

End For 
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Return D = {D₁, D₂, ..., Dₜ} 

 

3.1.3 Depth Normalization 

Depth normalization is a crucial preprocessing step that ensures consistency in the distribution 

of depth values across video frames. Since raw depth maps captured from RGB-D sensors or 

stereo systems can be affected by environmental factors, sensor noise, or lighting conditions, 

normalization brings uniformity and reduces inter-frame variability. It is especially important 

in training deep learning models as it stabilizes the input scale, making learning more efficient 

and robust. 

Let Dₜ(x, y) denote the depth value at pixel (x, y) for the t-th frame. The depth map is 

normalized by subtracting the mean depth value μ_{Dₜ} and dividing by the standard 

deviation σ_{Dₜ}, producing a standardized depth map denoted by D̂ₜ(x, y): 

D̂ₜ(x, y) = (Dₜ(x, y) − μ_{Dₜ}) / σ_{Dₜ} 

This transformation centers the depth distribution around zero with a unit variance, helping 

the neural network focus on meaningful spatial variations rather than absolute distance values. 

It also mitigates issues due to varying facial positions or sensor distance during data capture. 

Depth normalization is applied independently to each frame in the video sequence, ensuring 

that localized geometric features are preserved and uniformly scaled before further processing 

such as noise filtering, ROI extraction, or spatiotemporal modeling. The algorithm is as 

follows 

Input: 

  Depth maps D = {D₁, D₂, ..., Dₜ} 

Output: 

  Normalized depth maps D̂ = {D̂₁, D̂₂, ..., D̂ₜ} 

For each Dₜ in D: 

  μ = mean(Dₜ) 

  σ = std(Dₜ) 

  For each pixel (x, y) in Dₜ: 

D̂ₜ(x, y) = (Dₜ(x, y) − μ) / σ 

End For 

Return D̂ 

 

3.2 STDL-Net – Spatio-Temporal Deep Liveness Network 

           The proposed deep learning architecture is a convolutional neural network (CNN)-

based model designed to perform face liveness detection by distinguishing real human faces 

from spoofed or fake representations. The input to the model is a facial image, which 

undergoes multiple stages of feature extraction and classification. The first stage is a 

convolutional layer that applies a set of learnable filters to the input image, capturing local 

features such as edges, textures, and contours. These low-level features form the foundation 

for deeper hierarchical representations in subsequent layers. The output of the convolutional 

layer is then passed through a sequence of three Time Distributed (TD) layers. The Time 

Distributed mechanism ensures that operations such as convolution or dense transformations 

are applied independently to each spatial slice (or temporal frame, in the case of video inputs), 

thereby preserving spatial or temporal coherence. This is especially useful in face liveness 

detection systems where subtle temporal or micro-texture patterns are essential for 

differentiating live faces from spoof attempts such as printed photos or replayed videos. 

Max pooling operations are integrated after the first TD layer and again after the final TD 

block to reduce spatial dimensions, improve generalization by down-sampling, and prevent 

overfitting. These layers retain the most prominent activations while discarding less relevant 
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information, thus enabling the network to focus on critical regions of interest. The resulting 

feature maps are then flattened and forwarded to a pair of fully connected dense layers. These 

dense layers act as high-level abstractors, combining and learning complex interactions 

among the extracted features. They help the model identify unique patterns related to liveness 

cues, such as skin reflectance, facial depth consistency, and blinking. 

The penultimate layer is an output layer that produces raw class scores (logits), representing 

the likelihood of each predefined class. Finally, a Softmax activation function normalizes 

these scores into probability values, allowing the model to make a categorical decision, 

typically between “real” and “spoof.” This classification framework is particularly suitable for 

face anti-spoofing applications in security-sensitive domains such as biometric authentication, 

access control, and surveillance systems. The architecture’s modular design, leveraging 

convolutional and TD layers in tandem with pooling and dense components, facilitates the 

extraction of both spatial and temporal features, thereby enhancing the robustness and 

accuracy of face liveness detection.  

The proposed deep learning architecture(Figure 3.2) for face liveness detection integrates 

convolutional, time-distributed, and dense layers in a hierarchical structure designed to 

effectively capture both spatial and temporal features of facial inputs.  

 
Figure 3.2: Architecture of STDL-Net 

The model takes an input image I ∈  ℝ^{H×W×C}, where H, W, and C denote the height, 

width, and number of channels, respectively. This input is first passed through a 2D 

convolutional layer, which performs feature extraction using a set of learnable filters. The 

operation of the convolutional layer can be mathematically represented as: 

Fᵢⱼ^(ᵏ) = σ(∑ₘₙ Wₘₙ^(ᵏ) · I_{i+m, j+n} + b^(ᵏ)) 

The output feature maps are then processed by a sequence of three Time Distributed (TD) 

layers. The Time Distributed wrapper applies the same layer (e.g., Dense or Conv2D) to each 

temporal or spatial slice independently: 

TD(x)ₜ = f(xₜ), for all t ∈  {1, 2, ..., T} 

Max Pooling layers are employed after the first and third TD layers to reduce the 

dimensionality and retain the most significant features. The max pooling operation is given 

by: 

Pᵢⱼ = max₍ₘₙ₎∈ℛ F_{i+m,j+n} 

After the feature extraction layers, the data is flattened and passed through two fully 

connected dense layers. Each dense layer computes a weighted sum followed by an 

activation: 
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z^(ˡ) = W^(ˡ)a^(ˡ⁻¹) + b^(ˡ),  a^(ˡ) = σ(z^(ˡ)) 

The final output layer produces raw logits z ∈  ℝ^K, where K is the number of output classes 

(typically 2 for real vs. spoof). These logits are transformed into probabilities using the 

Softmax function: 

ŷᵢ = e^{zᵢ} / ∑ⱼ₌₁^K e^{zⱼ}, for i = 1, 2, ..., K 

The predicted class ŷ corresponds to the class with the highest probability score. This output 

is used to classify the input image as either a live face or a spoof attempt. This architecture is 

particularly well-suited for biometric security systems where robustness and real-time 

performance are critical. 

Algorithm 2: 

Input 

F = {F₁, F₂, ..., Fₙ} // Sequence of RGB + Depth frames 

For each frame Fₜ ∈  F: //Pre-processing 

    Dₜ ← extract_depth(Fₜ) 

μ_D ← mean(Dₜ), σ_D ← std(Dₜ) 

𝐷̂̂ₜ(x, y) = (Dₜ(x, y) - μ_D) / σ_D 

𝐷̂̂ₜ ← median_filter(𝐷̂̂ₜ) 

    ROIₜ ← face_crop(Fₜ, 𝐷̂̂ₜ) 

 

Xₜ = {ROIₜ₋₂, ROIₜ₋₁, ROIₜ, ROIₜ₊₁, ROIₜ₊₂} //Spatial Feature Extraction (3D CNN) 

fₛ = 3D_CNN(Xₜ) 

For t = 1 to T:  //Temporal Feature Extraction (LSTM) 

   hₜ = LSTM(fₛₜ, hₜ₋₁) 

For each spatial location i∈  [1, N]: //Attention Mechanism and Feature Fusion 

   eᵢ = wᵀ · tanh(Wₛ · fₛ,ᵢ + Wₜ · fₜ) 

   αᵢ = exp(eᵢ) / Σⱼ exp(eⱼ) 

f_final = Σᵢ αᵢ · fₛ,ᵢ 

ŷ = Softmax(W_c · f_final + b_c) //Classification 

Output: 

ŷ ∈ { Real, Spoof_type } 

 

3.3 Training Details 

The proposed STDL-Net architecture was trained using a supervised learning paradigm 

tailored for face liveness detection from RGB-D video sequences. The training phase focused 

on optimizing the model to differentiate between genuine and spoofed facial inputs by 

leveraging both spatial and temporal cues. 

The dataset consisted of real and spoofed face recordings collected using Intel RealSense 

D435 and ZED stereo cameras, ensuring the availability of high-quality RGB and 

corresponding depth information. The input data was preprocessed by resizing the RGB 

frames and depth maps to a resolution of 128 × 128 pixels. Temporal segments of five 

consecutive frames were generated using a sliding window approach to facilitate spatio-

temporal learning. Each frame’s depth channel was normalized using z-score normalization to 

remove sensor-specific variability and highlight geometric differences between real and 

spoofed faces. 

To improve generalization and prevent overfitting, data augmentation was applied, including 

random horizontal flipping, random cropping, and illumination perturbations to simulate 

diverse environmental conditions. These augmentations help the model learn more robust 

representations by exposing it to variations that could occur in real-world scenarios. 
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The model was implemented in TensorFlow 2.10 with the Keras API. The Adam optimizer 

was selected due to its adaptive learning rate capabilities and strong convergence properties. 

The initial learning rate was set to 0.0001, and a ReduceLROnPlateau learning rate scheduler 

was employed to reduce the learning rate when validation performance plateaued. The 

categorical cross-entropy loss function was used to handle multi-class spoof classification. A 

dropout rate of 0.3 was applied in dense layers to reduce overfitting by randomly deactivating 

neurons during training. The network weights were initialized using the He normal 

distribution for convolutional layers and Xavier uniform initialization for fully connected 

layers. 

Training was conducted for up to 50 epochs, with an early stopping mechanism based on 

validation AUC, using a patience of 7 epochs. A batch size of 32 was used, and training was 

performed on a high-performance system with an NVIDIA RTX 3090 GPU (24 GB VRAM), 

AMD Ryzen 9 5950X CPU, and 64 GB RAM running on Ubuntu 20.04 LTS. 

To validate the model’s robustness, a 5-fold cross-validation strategy was adopted. The data 

was split such that no subject appeared in both training and validation sets within a fold. 

Metrics including Accuracy, Precision, Recall, F1-score, Area Under the ROC Curve (AUC), 

and Equal Error Rate (EER) were computed for each fold. The final reported performance is 

the mean across all folds, providing a statistically reliable assessment of the model's 

effectiveness. 

This comprehensive training setup enabled the STDL-Net architecture to effectively learn 

spatial and temporal patterns inherent in live versus spoofed face sequences, demonstrating 

high performance across diverse spoofing modalities such as print attacks, replay attacks, 3D 

masks, and deepfakes. 

Table 3.1 summarizes the key training configurations, data specifications, and computational 

setup used in our experiments. 

Table 3.1 Parameter List 

Parameter Value 

Framework TensorFlow 2.10 with Keras 

Input Resolution 128 × 128 pixels 

Segment Length 5 frames per video clip 

Data Augmentation Horizontal flip, random crop, brightness variation 

Loss Function Categorical Cross-Entropy 

Optimizer Adam 

Initial Learning Rate 0.0001 

Learning Rate Scheduler ReduceLROnPlateau (patience=3, factor=0.5) 

Batch Size 32 

Epochs 50 (with early stopping, patience=7) 

Dropout 0.3 in dense layers 

Weight Initialization He normal (Conv), Xavier uniform (Dense) 

Validation Protocol 5-fold cross-validation 

Evaluation Metric Accuracy, Precision, Recall, F1-Score, AUC, EER 

Hardware (GPU) NVIDIA RTX 3090, 24GB VRAM 

Hardware (CPU) AMD Ryzen 9 5950X 

RAM 64 GB DDR4 

Operating System Ubuntu 20.04 LTS 

 

4. Results and Analysis 

4.1 Ablation Study on STDL-Net Components 

To evaluate the individual contribution of each component within the STDL-Net architecture, 

an ablation study was performed by selectively removing core modules and assessing their 
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impact on system performance. Table 4.1 presents a comparison of various model variants 

with different configurations of depth input, LSTM layers, and attention mechanisms. 

Table 4.1 Comparison of different models 

Model Variant Depth 

Input 

LSTM Attention Accuracy 

(%) 

AUC / EER 

Full STDL-Net 

(Proposed) 

Yes Yes Yes 97.3 0.982 / 2.1 

w/o Attention Yes Yes No 95.6 0.964 / 3.4 

w/o LSTM Yes No Yes 94.2 0.951 / 4.2 

w/o Depth No Yes Yes 91.7 0.923 / 5.6 

w/o Depth + LSTM No No Yes 88.5 0.896 / 7.1 

Baseline CNN No No No 85.2 0.871 / 8.3 

 

The full model, incorporating all components, achieved the highest accuracy and AUC. 

Gradual exclusion of modules such as the LSTM or attention resulted in a noticeable drop in 

performance. The most significant decline was observed when depth input was removed, 

confirming the critical role of 3D geometric information in liveness detection. The baseline 

CNN, which lacked all three components, showed the weakest performance, emphasizing the 

effectiveness of combining depth sensing, temporal modeling, and attention mechanisms. 

 

4.2 Spoof Type Breakdown and Performance Analysis 

To further evaluate the robustness and generalization capability of the proposed STDL-Net, 

we conducted a spoof-type-wise performance analysis. The goal is to assess how effectively 

the model detects individual spoofing categories such as print attacks, replay videos, 3D 

masks, and deepfakes. Table 4.2presents the classification accuracy, precision, recall, and F1-

score for each spoof type alongside the real (live) class. 

 

Table 4.2 Performance Analysis 

Spoof Type Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Print Attack 96.8 96.3 95.9 96.1 

Replay Attack 97.5 97.1 96.7 96.9 

3D Mask 98.1 97.9 97.4 97.6 

Deepfake 96.4 95.8 95.2 95.5 

Real (Live) 97.6 97.8 97.1 97.4 

 

As observed from the results, the STDL-Net model achieves consistently high classification 

accuracy across all spoof categories. The model exhibits its highest accuracy in detecting 3D 

mask attacks (98.1%), benefiting from the availability of 3D depth information, which 

distinguishes authentic geometric facial structures from rigid or irregular mask surfaces. 

Replay attacks are also effectively handled with 97.5% accuracy due to the model's temporal 

feature extraction capabilities. While deepfake detection lags slightly behind at 96.4%, the 

model still performs well despite the high realism of synthesized faces. Overall, the results 

confirm the effectiveness of STDL-Net in differentiating between real and spoofed inputs 

using spatial-temporal fusion strategies. 

 

4.3 Benchmark Comparison with Existing Methods 

To evaluate the effectiveness and superiority of the proposed STDL-Net architecture, we 

conducted a comprehensive benchmarking analysis against several state-of-the-art face anti-

spoofing models. These include both unimodal RGB-based models and hybrid approaches 
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that utilize spatial or temporal cues. Table 4.3 presents a comparative summary of 

performance metrics, including Accuracy, Area Under the Curve (AUC), and Equal Error 

Rate (EER) across standard datasets such as CASIA-FASD, REPLAY-ATTACK, and our 

custom RGB-D dataset. 

The results clearly demonstrate that STDL-Net surpasses conventional 2D models such as 

MTCNN and Patch-CNN by a significant margin. While these models achieve competitive 

performance under controlled conditions, they often struggle in the presence of realistic 

spoofing scenarios like 3D masks or high-resolution replays. For instance, Patch-CNN 

achieves an accuracy of 96.2% but lacks robustness in the presence of geometric distortion 

introduced by spoof mediums. In contrast, STDL-Net achieves an accuracy of 97.3%, with an 

AUC of 0.982 and an EER of just 2.1%, outperforming all baselines. 

A key advantage of STDL-Net lies in its multi-modal architecture, which integrates RGB 

textures, depth maps, and temporal dynamics through spatio-temporal learning. This 

enables the model to capture fine-grained facial movements (e.g., eye blinking, subtle muscle 

shifts) and distinguish authentic 3D structure from spoof artifacts. Additionally, the attention 

mechanism embedded in the model architecture enhances its ability to focus on discriminative 

facial regions such as the eye and nose bridge, where spoofing inconsistencies are typically 

most evident. 

Moreover, STDL-Net demonstrates strong generalization capability across various attack 

modalities, including print, replay, 3D mask, and deepfake attacks. In contrast, models like 

the Siamese Network and Face Mesh suffer performance drops when tested on unseen spoof 

types or under varying illumination and pose conditions. This highlights the importance of 

depth-aware and temporally adaptive modeling, which is central to the design of STDL-Net. 

 

Table 4.3: Performance Comparison with Existing Face Anti-Spoofing Methods 

 

Method Year Input Modality Accuracy 

(%) 

AUC EER 

(%) 

Dataset Used 

MTCNN [2] 2019 RGB 95.2 0.941 3.6 CASIA-FASD 

Patch-CNN [6] 2020 RGB 96.2 0.965 2.9 REPLAY-

ATTACK 

Siamese 

Network [4] 

2021 RGB 94.8 0.933 3.9 Custom-Pair 

Dataset 

Face Mesh + 

DNN [1] 

2022 RGB + 

Landmarks 

97.2 0.972 2.3 Custom Dataset 

STDL-Net 

(Proposed) 

2025 RGB + Depth + 

Time 

97.3 0.982 2.1 Ours (RGB-D 

Spoof) 

 

Metrics used include Accuracy, Precision, Recall, F1-Score, AUC, and EER. The system is 

evaluated using k-fold cross-validation across spoof types. 

 

4.4 Performance Comparison on Datasets 

Table 4.4 summarizes the performance comparison of different methods (LSTM+CNN, 

3DMMs, TBC, and the proposed STDL-Net) on the FDDB and WIDER FACE datasets using 

four key evaluation metrics: Accuracy, Precision, Recall, and F1-score. 

 LSTM+CNN shows baseline performance with moderate accuracy (90% on FDDB and 91% 

on WIDER FACE). While recall is reasonably strong, the overall F1-score remains lower due 

to reduced precision. 
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 3DMMs improve slightly over LSTM+CNN, with balanced accuracy and recall (92–93%), 

but still struggle to capture fine-grained liveness cues, reflected in lower F1-scores (88–89%). 

 TBC further enhances performance with accuracy reaching 94% (FDDB) and 95% (WIDER 

FACE). Precision and recall values are consistently higher, leading to better overall F1-scores 

compared to the previous methods. 

 STDL-Net (Proposed) outperforms all baselines, achieving the highest accuracy of 96% on 

FDDB and 97% on WIDER FACE. Precision, recall, and F1-scores are also significantly 

improved, confirming its robustness across both datasets. The strong performance indicates 

that integrating spatio-temporal learning with depth features and attention mechanisms 

enables STDL-Net to better distinguish real faces from spoofed attacks. Figure 4.1 presents 

the comparison in a chart. 

 

Table 4.4 Performance Comparison on Datasets 

Methods 
FDDB WIDERFACE 

Accurac

y 

Precisio

n 

Recal

l 

F1-

score 

Accurac

y 

Precisio

n 

Recal

l 

F1-

score 

LSTM+CN

N 90 89 91 87 91 90 92 88 

3DMMs 92 91 92 88 93 92 93 89 

TBC 94 93 94 89 95 94 95 90 

STDL-Net 96 95 96 92 97 96 97 93 

 

 

Figure 4.1 Comparison of the FDDB and WIDER FACE datasets with various methods 

6. Conclusion&Future Work 
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This research introduced STDL-Net, a novel spatio-temporal deep learning framework that 

integrates RGB textures, 3D depth cues, and temporal motion dynamics to provide a robust 

solution for face anti-spoofing. Unlike traditional 2D-based methods, which are highly 

susceptible to print, replay, and mask attacks, the proposed approach leverages depth-aware 

convolutional layers and LSTM-based temporal modeling to capture both geometric and 

behavioral liveness indicators. The addition of attention mechanisms further enhances the 

model’s discriminative capability by focusing on critical facial regions, such as the eyes and 

mouth, which are highly informative for liveness detection. Experimental validation across 

multiple spoofing modalities—including print attacks, replay videos, 3D masks, and AI-

generated deepfakes—demonstrated the superior performance of STDL-Net, achieving an 

accuracy of 97.3%, an AUC of 0.982, and a low EER of 2.1%. These results confirm that 

spatio-temporal fusion, coupled with attention-driven feature selection, can significantly 

advance the reliability of next-generation biometric authentication systems. Beyond numerical 

improvements, STDL-Net offers practical value by showing resilience under diverse 

environmental conditions, illumination variations, and realistic attack strategies, positioning it 

as a scalable solution for deployment in high-security applications such as mobile payment 

authentication, e-voting, surveillance, and border control systems.Although STDL-Net has 

shown strong performance, there are several areas for improvement in future research. One 

direction is to optimize the model for real-time use on mobile and IoT devices by applying 

lightweight techniques such as pruning, quantization, and knowledge distillation. Another key 

challenge is improving generalization across unseen, real-world environments, which can be 

addressed using domain adaptation and transfer learning methods. Extending the framework 

to include multi-modal biometrics, such as combining face with voice, gait, or fingerprint 

recognition, can further strengthen security. As deepfake attacks become more sophisticated, 

future work should also include specialized deepfake detection modules that use forensic and 

frequency-based features. To build trust in critical applications, explainable AI methods like 

Grad-CAM can be integrated to make the system’s decisions more transparent. Finally, large-

scale benchmarking and alignment with international biometric standards will be necessary to 

ensure fairness, reliability, and wide-scale deployment. 
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