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Abstract

Face spoofing remains a significant vulnerability in facial biometric systems, where attackers employ techniques
such as high-resolution photo prints, video replays, 3D masks, and even Al-generated deepfakes to deceive
liveness detection modules. To counter these evolving threats, this study introduces STDL-Net, a Spatio-
Temporal Deep Learning Network designed to detect facial spoofing by integrating both spatial depth cues and
temporal behavioral features. STDL-Net employs a dual-stream architecture that processes RGB and 3D depth
maps using 3D convolutional neural networks (3D-CNNSs) to capture geometric textures and facial contours,
which are inherently difficult to forge. Simultaneously, it models time-dependent facial dynamics like blinking,
subtle head movements, and micro-expressions using Long Short-Term Memory (LSTM) networks, enabling
detection of both static and dynamic spoofing attempts. Attention mechanisms further refine the model's focus
on discriminative regions of interest, such as the eye and mouth areas. Experimental validation was conducted on
a custom dataset acquired using stereo vision and structured-light sensors (e.g., Intel RealSense, Microsoft
Kinect), including a balanced mix of real and spoofed samples. The proposed STDL-Net achieved high
robustness, yielding 97.3% accuracy, a 0.982 AUC, and low error rates across diverse spoofing categories. These
results underscore the effectiveness of combining depth sensing with temporal learning, offering a
comprehensive and scalable solution for next-generation biometric security systems.

Keywords: Face Anti-Spoofing, 3D Depth, Spatio-Temporal Learning, Deepfake Detection, STDL-Net,
Liveness Detection, Biometric Security

1. Introduction

Biometric verification systems, especially those based on facial recognition, have emerged as
superior alternatives to traditional password-, PIN-, and card-based authentication methods
due to their non-intrusiveness and usability [1]. Historically, identity verification depended on
physical documents or possessions,but modern biometric technologies now leverage inherent
traits—such as fingerprints, iris scans, and facial features—for robust authentication [2].
Among these, facial recognition stands out for ease of use and broad adoption in sectors
including mobile banking, access control, and surveillance [3].Despite its advantages, facial
biometrics is increasingly susceptible to presentation attacks, including printed photos,
replayed videos, 3D masks, and even Al-generated deepfakes, which can easily deceive
systems based on static 2D analysis [4]. The lack of depth perception and temporal analysis in
these systems results in high false acceptance rates when faced with sophisticated spoofing
attacks [5]. Conventional anti-spoofing approaches are inadequate in addressing advanced
spoofing threats because they typically rely on static texture or motion cues alone. This results
in poor generalization across different spoof types and operational conditions.To address
these limitations, this study proposes STDL-Net, a Spatio-Temporal Deep Learning Network
designed to integrate: Spatial information via 3D-CNN extraction from RGB and depth data
to capture geometric facial features, Temporal dynamics using LSTM layers to model
involuntary actions such as eye blinking and micro-expressions,Attention mechanisms to
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focus learning on the most informative facial regions,A robust classification pipeline capable
of distinguishing real users from spoof types including print, replay, 3D mask, and deepfake.
In this work (Phase 3), STDL-Net extends these models by fusing depth and motion streams
through an asymmetric encoder-decoder with multi-attention flows. Extensive experiments
using RGB-depth video sequences show that STDL-Net outperforms both unimodal and uni-
task baselines under varied environmental and spoof conditions.

2. Related Work

According to the authors’ understanding, the literature on facial liveness detection has grown
in recent years, yet few works provide a complete and comparative analysis of multi-modal
approaches integrating spatial and temporal cues. Most methods rely either on static image
features or individual temporal indicators, often lacking robustness under variable
environmental conditions.

The method proposed in [1] uses Face Mesh to extract 468 facial landmarks for liveness
detection. The model adapts well to dynamic backgrounds, illumination changes, and non-
frontal facial orientations, achieving a reported precision of 97.23%. However, it is sensitive
to occlusions and fails under extreme head poses. In [2], a Multi-task Cascade Convolutional
Neural Network (MTCNN) is used for real-time detection and classification of identity
spoofing. The system shows improved performance in criminal identification applications,
with an accuracy of 98%, although it lacks depth modeling for 3D mask detection. To address
image quality degradation in spoofed inputs, the authors of [3] reframe the detection problem
as a binary quality classification task. Using a facial similarity score-based pseudo-labeling
strategy, they reach a performance of 94%, highlighting the role of image fidelity in spoof
detection. In [4], a Deep Siamese Network is trained on image pairs (real-real and real-fake)
using Joint Bayesian, Contrastive, and Softmax loss to learn face authenticity. This pairing
mechanism helps the network differentiate spoof artifacts by directly comparing spatial
similarity between real and fake inputs. An innovative application of facial liveness detection
in secure e-voting systems is presented in [5], integrating deep learning with blockchain and
anonymous signatures. Though the main goal is secure polling, the system demonstrates the
growing importance of liveness detection in digital identity verification scenarios.The authors
in [6] propose a patch-based CNN using the VGG-16 architecture for detecting localized
spoofing cues. Evaluated on CASIA-FASD and REPLAY-ATTACK datasets, the method
achieves an EER of 0.67% and HTER of 0.71%, showing strong results in known
environments but limited generalization to unseen spoof types.A lightweight CNN for facial
recognition in extreme conditions—such as underwater, avalanche, or mining environments—
is explored in [7]. This architecture enhances facial feature extraction even in low-visibility or
high-noise  contexts. However, it is not primarily designed for spoofing
countermeasures.Despite these advances, no current literature comprehensively addresses
multi-modal fusion of depth and motion features for robust spoof detection. Most studies are
restricted to RGB data or specific attack types and do not sufficiently analyze generalization
performance across spoof modalities (e.g., print, video, 3D mask, and deepfake).

3. Proposed Methodology

3.1 System Model

The proposed system model(Figure 3.1), STDL-Net (3D Ai-Temporal Deep Learning
Network), is a hybrid framework designed for robust face anti-spoofing by leveraging both
spatial and temporal features from input video sequences.
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The process begins with depth map acquisition using video input, followed by depth
normalization and face detection. A 3D Convolutional Neural Network (3D CNN) is
employed to extract depth-aware spatial features, while temporal features are derived from
frame sequences. These features are then passed into a dual-stream 3D CNN or ConvLSTM
network, which processes both spatial geometry and temporal dynamics. An attention
mechanism is integrated to emphasize critical facial regions, and a depth estimation module
aids in discriminating real facial structures from spoof artifacts. Finally, a classification head
combines the RGB, depth, and temporal data to produce a liveness prediction, identifying
whether the face is real or spoofed. The system achieves high spoof detection accuracy by
integrating depth cues, motion patterns, and attention-driven feature selection.
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Figure 3.1: Overall Architecture for 3D face anti-spoofing using STDL-Net

3.1.1 Video Input Segmentation
The foundation of the proposed face liveness detection framework begins with the acquisition
of continuous video data captured using an RGB-D camera setup. This sensor configuration
provides both color (RGB) frames and corresponding depth maps, allowing the system to
utilize visual texture and geometric surface information simultaneously. The dual-modality
video capture provides significant advantages in distinguishing real human faces from
spoofing artifacts such as printed photos, video replays, and 3D masks. While RGB frames
help detect texture-based inconsistencies, depth maps offer cues about facial geometry that are
difficult to spoof convincingly.
Once the video stream is captured, it is represented as a sequence of synchronized frames:

V= {Fz, Fz, F3, veey E},
where T is the total number of frames. Each frame F; consists of an RGB image R, € RHxWx3
and a corresponding depth map D, € R®™V, To ensure effective analysis of motion-related
cues, the video is partitioned into overlapping segments of fixed temporal length, typically w
=5 frames per segment.
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This segmentation allows the model to capture short-term temporal changes that are critical
for liveness detection, such as eye blinks, lip movements, and micro-expressions. Let w
denote the segment window size. Then, each segment S; can be formally defined as:

S, = {Fi, Fiis, Fiz, ..., FﬁW—]}, fori= 1,2,...,.T—-w+ 1.
This overlapping window approach increases the granularity of motion analysis and provides
richer temporal context to the subsequent 3D convolutional and recurrent layers. It is
particularly effective in handling variations in facial behavior and spoofing strategies that
exploit temporal sparsity. The algorithm is as follows

Let:
V={F, F;, ..., F} // Input video with T frames
weZ* /I Segment window size (e.g., w = 5)
S={} /I List to hold segments

Fori=1toT—w+ I:
S = {Fi, Fi+1, . FﬁW—l}
Return S = {S1, Sz, ..., Sew+}

3.1.2 Depth Map Acquisition
Depth map acquisition is a critical component of the proposed face liveness detection system,
as it enables the extraction of three-dimensional geometric features that cannot be replicated
by two-dimensional spoofing mediums such as photographs or mobile screens. The input to
this module is the segmented video S = {Si, Sz, ..., Sk}, where each segment S; contains w
consecutive frames F; = {R,, D;}. The goal is to extract or estimate reliable depth maps D
corresponding to each RGB frame R..
In cases where RGB-D cameras are used, such as Intel RealSense or ZED stereo cameras,
depth maps are directly obtained from the hardware. For stereo-based systems, depth
estimation is computed using disparity between left and right image pairs based on the
pinhole camera model:
D(x,y) = (B xf)/(d(x,y) + &
where B is the baseline distance between the stereo cameras, f is the focal length, and € is a
small constant to avoid division by zero. This formula reconstructs the 3D structure of the
face by calculating the distance of each pixel from the camera plane. Alternatively, if
structured-light or time-of-flight sensors are used, depth maps are provided directly without
requiring stereo matching.
Depth acquisition provides an additional biometric modality that complements RGB features
and improves the robustness of the liveness detection pipeline, especially under spoofing
conditions where the depth profile remains flat or irregular. The algorithm is as follows
Given:
Algorithm 1:

Fi={R, D}, wheret=1to T

(L, R, - Left and Right stereo image pair (if depth not directly available)
Output:

Depth maps D = {D1, D;, ..., D}
For each framet=1to T:

If a depth sensor is available:

D, = SensorOutput(t)

Else if stereo images are available:
d(x, y) = StereoDisparity(L, R,)
Dix.y) = (B x )/ (d(x, y) +¢)
End For
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Return D = {D., D, ..., D}

3.1.3 Depth Normalization
Depth normalization is a crucial preprocessing step that ensures consistency in the distribution
of depth values across video frames. Since raw depth maps captured from RGB-D sensors or
stereo systems can be affected by environmental factors, sensor noise, or lighting conditions,
normalization brings uniformity and reduces inter-frame variability. It is especially important
in training deep learning models as it stabilizes the input scale, making learning more efficient
and robust.
Let D(x, y) denote the depth value at pixel (x, y) for the t-th frame. The depth map is
normalized by subtracting the mean depth value p {D:} and dividing by the standard
deviation c_{D.}, producing a standardized depth map denoted by Dy(x, y):
Dyx, y) = (Dix, y) — u_{Dy}) / o_{Dy}
This transformation centers the depth distribution around zero with a unit variance, helping
the neural network focus on meaningful spatial variations rather than absolute distance values.
It also mitigates issues due to varying facial positions or sensor distance during data capture.
Depth normalization is applied independently to each frame in the video sequence, ensuring
that localized geometric features are preserved and uniformly scaled before further processing
such as noise filtering, ROl extraction, or spatiotemporal modeling. The algorithm is as
follows
Input:

Depth maps D = {Di, D;, ..., D}
Output:

Normalized depth maps D = {D,, D, ..., D,}
For each D, in D:

= mean(D,)

o = std(D,)

For each pixel (x, y) in Dy:
Dyx, y) = (Dix, y) —1) /o
End For
Return D

3.2 STDL-Net — Spatio-Temporal Deep Liveness Network

The proposed deep learning architecture is a convolutional neural network (CNN)-
based model designed to perform face liveness detection by distinguishing real human faces
from spoofed or fake representations. The input to the model is a facial image, which
undergoes multiple stages of feature extraction and classification. The first stage is a
convolutional layer that applies a set of learnable filters to the input image, capturing local
features such as edges, textures, and contours. These low-level features form the foundation
for deeper hierarchical representations in subsequent layers. The output of the convolutional
layer is then passed through a sequence of three Time Distributed (TD) layers. The Time
Distributed mechanism ensures that operations such as convolution or dense transformations
are applied independently to each spatial slice (or temporal frame, in the case of video inputs),
thereby preserving spatial or temporal coherence. This is especially useful in face liveness
detection systems where subtle temporal or micro-texture patterns are essential for
differentiating live faces from spoof attempts such as printed photos or replayed videos.
Max pooling operations are integrated after the first TD layer and again after the final TD
block to reduce spatial dimensions, improve generalization by down-sampling, and prevent
overfitting. These layers retain the most prominent activations while discarding less relevant
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information, thus enabling the network to focus on critical regions of interest. The resulting
feature maps are then flattened and forwarded to a pair of fully connected dense layers. These
dense layers act as high-level abstractors, combining and learning complex interactions
among the extracted features. They help the model identify unique patterns related to liveness
cues, such as skin reflectance, facial depth consistency, and blinking.

The penultimate layer is an output layer that produces raw class scores (logits), representing
the likelihood of each predefined class. Finally, a Softmax activation function normalizes
these scores into probability values, allowing the model to make a categorical decision,
typically between “real” and “spoof.” This classification framework is particularly suitable for
face anti-spoofing applications in security-sensitive domains such as biometric authentication,
access control, and surveillance systems. The architecture’s modular design, leveraging
convolutional and TD layers in tandem with pooling and dense components, facilitates the
extraction of both spatial and temporal features, thereby enhancing the robustness and
accuracy of face liveness detection.

The proposed deep learning architecture(Figure 3.2) for face liveness detection integrates
convolutional, time-distributed, and dense layers in a hierarchical structure designed to
effectively capture both spatial and temporal features of facial inputs.
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Figure 3.2: Architecture of STDL-Net
The model takes an input image | € RMNHxWxC}, where H, W, and C denote the height,
width, and number of channels, respectively. This input is first passed through a 2D
convolutional layer, which performs feature extraction using a set of learnable filters. The
operation of the convolutional layer can be mathematically represented as:
Fi*(%) = o Wan(*) - 1 _{i+m, j+n} + b(H)
The output feature maps are then processed by a sequence of three Time Distributed (TD)
layers. The Time Distributed wrapper applies the same layer (e.g., Dense or Conv2D) to each
temporal or spatial slice independently:
TD(x): = f(x,), forall t € {1, 2, ..., T}
Max Pooling layers are employed after the first and third TD layers to reduce the
dimensionality and retain the most significant features. The max pooling operation is given
by:
Py = maXum ER F_{i+m,j+n}
After the feature extraction layers, the data is flattened and passed through two fully
connected dense layers. Each dense layer computes a weighted sum followed by an
activation:
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z() = W()a™("™) + b(), a™() = o(z"())
The final output layer produces raw logits z € R"K, where K is the number of output classes
(typically 2 for real vs. spoof). These logits are transformed into probabilities using the
Softmax function:
yi=eMzt /YK eNz), fori=1,2, .., K
The predicted class § corresponds to the class with the highest probability score. This output
is used to classify the input image as either a live face or a spoof attempt. This architecture is
particularly well-suited for biometric security systems where robustness and real-time
performance are critical.
Algorithm 2:
Input
F={F., F, .., F,} [l Sequence of RGB + Depth frames
For each frame F; € F: [[Pre-processing

D, — extract depth(F,)
u D «— mean(D,), o D <« std(D,)
ix, ) = (Dux, y) -u_ D)o D
17 «— median_filter(()7)

ROI, — face crop(F, ;)

X = {ROI-2, ROI-1, ROI, ROI+1, ROI+2} //Spatial Feature Extraction (3D CNN)
f.=3D CNN(X,)
Fort=1to T: //Temporal Feature Extraction (LSTM)
hy = LSTM(fs, hi-1)
For each spatial location i€ [1, N]: //Attention Mechanism and Feature Fusion
e =W tanh(Ws - fo,i + Wi - f))
o; = exp(ey) / 2 exp(e;)
f final = X; a; - fs,i
y = Softmax(W_c - f_final + b_c) //Classification
Output:
y €{ Real, Spoof_type }

3.3 Training Details

The proposed STDL-Net architecture was trained using a supervised learning paradigm
tailored for face liveness detection from RGB-D video sequences. The training phase focused
on optimizing the model to differentiate between genuine and spoofed facial inputs by
leveraging both spatial and temporal cues.

The dataset consisted of real and spoofed face recordings collected using Intel RealSense
D435 and ZED stereo cameras, ensuring the availability of high-quality RGB and
corresponding depth information. The input data was preprocessed by resizing the RGB
frames and depth maps to a resolution of 128 x 128 pixels. Temporal segments of five
consecutive frames were generated using a sliding window approach to facilitate spatio-
temporal learning. Each frame’s depth channel was normalized using z-score normalization to
remove sensor-specific variability and highlight geometric differences between real and
spoofed faces.

To improve generalization and prevent overfitting, data augmentation was applied, including
random horizontal flipping, random cropping, and illumination perturbations to simulate
diverse environmental conditions. These augmentations help the model learn more robust
representations by exposing it to variations that could occur in real-world scenarios.
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The model was implemented in TensorFlow 2.10 with the Keras API. The Adam optimizer
was selected due to its adaptive learning rate capabilities and strong convergence properties.
The initial learning rate was set to 0.0001, and a ReduceLROnPlateau learning rate scheduler
was employed to reduce the learning rate when validation performance plateaued. The
categorical cross-entropy loss function was used to handle multi-class spoof classification. A
dropout rate of 0.3 was applied in dense layers to reduce overfitting by randomly deactivating
neurons during training. The network weights were initialized using the He normal
distribution for convolutional layers and Xavier uniform initialization for fully connected
layers.
Training was conducted for up to 50 epochs, with an early stopping mechanism based on
validation AUC, using a patience of 7 epochs. A batch size of 32 was used, and training was
performed on a high-performance system with an NVIDIA RTX 3090 GPU (24 GB VRAM),
AMD Ryzen 9 5950X CPU, and 64 GB RAM running on Ubuntu 20.04 LTS.
To validate the model’s robustness, a 5-fold cross-validation strategy was adopted. The data
was split such that no subject appeared in both training and validation sets within a fold.
Metrics including Accuracy, Precision, Recall, F1-score, Area Under the ROC Curve (AUC),
and Equal Error Rate (EER) were computed for each fold. The final reported performance is
the mean across all folds, providing a statistically reliable assessment of the model's
effectiveness.
This comprehensive training setup enabled the STDL-Net architecture to effectively learn
spatial and temporal patterns inherent in live versus spoofed face sequences, demonstrating
high performance across diverse spoofing modalities such as print attacks, replay attacks, 3D
masks, and deepfakes.
Table 3.1 summarizes the key training configurations, data specifications, and computational
setup used in our experiments.

Table 3.1 Parameter List

Parameter Value

Framework TensorFlow 2.10 with Keras

Input Resolution 128 x 128 pixels

Segment Length 5 frames per video clip

Data Augmentation Horizontal flip, random crop, brightness variation
Loss Function Categorical Cross-Entropy

Optimizer Adam

Initial Learning Rate 0.0001

Learning Rate Scheduler ReduceLROnPlateau (patience=3, factor=0.5)
Batch Size 32

Epochs 50 (with early stopping, patience=7)

Dropout 0.3 in dense layers

Weight Initialization He normal (Conv), Xavier uniform (Dense)
Validation Protocol 5-fold cross-validation

Evaluation Metric Accuracy, Precision, Recall, F1-Score, AUC, EER
Hardware (GPU) NVIDIA RTX 3090, 24GB VRAM

Hardware (CPU) AMD Ryzen 9 5950X

RAM 64 GB DDR4

Operating System Ubuntu 20.04 LTS

4. Results and Analysis

4.1 Ablation Study on STDL-Net Components

To evaluate the individual contribution of each component within the STDL-Net architecture,
an ablation study was performed by selectively removing core modules and assessing their
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impact on system performance. Table 4.1 presents a comparison of various model variants
with different configurations of depth input, LSTM layers, and attention mechanisms.
Table 4.1 Comparison of different models

Model Variant Depth LSTM Attention | Accuracy AUC/EER
Input (%)

Full STDL-Net | Yes Yes Yes 97.3 0.982/2.1
(Proposed)

w/o Attention Yes Yes No 95.6 0.964 /3.4
w/o LSTM Yes No Yes 94.2 0.951/4.2
w/o Depth No Yes Yes 91.7 0.923/5.6
w/o Depth + LSTM | No No Yes 88.5 0.896/7.1
Baseline CNN No No No 85.2 0.871/8.3

The full model, incorporating all components, achieved the highest accuracy and AUC.
Gradual exclusion of modules such as the LSTM or attention resulted in a noticeable drop in
performance. The most significant decline was observed when depth input was removed,
confirming the critical role of 3D geometric information in liveness detection. The baseline
CNN, which lacked all three components, showed the weakest performance, emphasizing the
effectiveness of combining depth sensing, temporal modeling, and attention mechanisms.

4.2 Spoof Type Breakdown and Performance Analysis

To further evaluate the robustness and generalization capability of the proposed STDL-Net,
we conducted a spoof-type-wise performance analysis. The goal is to assess how effectively
the model detects individual spoofing categories such as print attacks, replay videos, 3D
masks, and deepfakes. Table 4.2presents the classification accuracy, precision, recall, and F1-
score for each spoof type alongside the real (live) class.

Table 4.2 Performance Analysis

Spoof Type | Accuracy (%) | Precision (%) | Recall (%) | F1-Score (%)
Print Attack | 96.8 96.3 95.9 96.1
Replay Attack | 97.5 97.1 96.7 96.9
3D Mask 98.1 97.9 97.4 97.6
Deepfake 96.4 95.8 95.2 95.5
Real (Live) 97.6 97.8 97.1 97.4

As observed from the results, the STDL-Net model achieves consistently high classification
accuracy across all spoof categories. The model exhibits its highest accuracy in detecting 3D
mask attacks (98.1%), benefiting from the availability of 3D depth information, which
distinguishes authentic geometric facial structures from rigid or irregular mask surfaces.
Replay attacks are also effectively handled with 97.5% accuracy due to the model's temporal
feature extraction capabilities. While deepfake detection lags slightly behind at 96.4%, the
model still performs well despite the high realism of synthesized faces. Overall, the results
confirm the effectiveness of STDL-Net in differentiating between real and spoofed inputs
using spatial-temporal fusion strategies.

4.3 Benchmark Comparison with Existing Methods

To evaluate the effectiveness and superiority of the proposed STDL-Net architecture, we
conducted a comprehensive benchmarking analysis against several state-of-the-art face anti-
spoofing models. These include both unimodal RGB-based models and hybrid approaches
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that utilize spatial or temporal cues. Table 4.3 presents a comparative summary of
performance metrics, including Accuracy, Area Under the Curve (AUC), and Equal Error
Rate (EER) across standard datasets such as CASIA-FASD, REPLAY-ATTACK, and our
custom RGB-D dataset.

The results clearly demonstrate that STDL-Net surpasses conventional 2D models such as
MTCNN and Patch-CNN by a significant margin. While these models achieve competitive
performance under controlled conditions, they often struggle in the presence of realistic
spoofing scenarios like 3D masks or high-resolution replays. For instance, Patch-CNN
achieves an accuracy of 96.2% but lacks robustness in the presence of geometric distortion
introduced by spoof mediums. In contrast, STDL-Net achieves an accuracy of 97.3%, with an
AUC 0f 0.982 and an EER of just 2.1%, outperforming all baselines.

A key advantage of STDL-Net lies in its multi-modal architecture, which integrates RGB
textures, depth maps, and temporal dynamics through spatio-temporal learning. This
enables the model to capture fine-grained facial movements (e.g., eye blinking, subtle muscle
shifts) and distinguish authentic 3D structure from spoof artifacts. Additionally, the attention
mechanism embedded in the model architecture enhances its ability to focus on discriminative
facial regions such as the eye and nose bridge, where spoofing inconsistencies are typically
most evident.

Moreover, STDL-Net demonstrates strong generalization capability across various attack
modalities, including print, replay, 3D mask, and deepfake attacks. In contrast, models like
the Siamese Network and Face Mesh suffer performance drops when tested on unseen spoof
types or under varying illumination and pose conditions. This highlights the importance of
depth-aware and temporally adaptive modeling, which is central to the design of STDL-Net.

Table 4.3: Performance Comparison with Existing Face Anti-Spoofing Methods

Method Year | Input Modality | Accuracy AUC | EER Dataset Used
(%) (%)

MTCNN [2] 2019 | RGB 95.2 0.941 | 3.6 CASIA-FASD

Patch-CNN [6] 2020 | RGB 96.2 0.965 | 2.9 REPLAY-
ATTACK

Siamese 2021 | RGB 94.8 0.933 3.9 Custom-Pair

Network [4] Dataset

Face Mesh +| 2022 | RGB +197.2 0972 |23 Custom Dataset

DNN [1] Landmarks

STDL-Net 2025 | RGB + Depth + | 97.3 0.982 | 2.1 Ours (RGB-D

(Proposed) Time Spoof)

Metrics used include Accuracy, Precision, Recall, F1-Score, AUC, and EER. The system is
evaluated using k-fold cross-validation across spoof types.

4.4 Performance Comparison on Datasets

Table 4.4 summarizes the performance comparison of different methods (LSTM+CNN,
3DMMs, TBC, and the proposed STDL-Net) on the FDDB and WIDER FACE datasets using
four key evaluation metrics: Accuracy, Precision, Recall, and F1-score.

LSTM+CNN shows baseline performance with moderate accuracy (90% on FDDB and 91%
on WIDER FACE). While recall is reasonably strong, the overall F1-score remains lower due
to reduced precision.
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3DMMs improve slightly over LSTM+CNN, with balanced accuracy and recall (92—93%),
but still struggle to capture fine-grained liveness cues, reflected in lower F1-scores (88—-89%).
TBC further enhances performance with accuracy reaching 94% (FDDB) and 95% (WIDER
FACE). Precision and recall values are consistently higher, leading to better overall F1-scores
compared to the previous methods.

STDL-Net (Proposed) outperforms all baselines, achieving the highest accuracy of 96% on
FDDB and 97% on WIDER FACE. Precision, recall, and F1-scores are also significantly
improved, confirming its robustness across both datasets. The strong performance indicates
that integrating spatio-temporal learning with depth features and attention mechanisms
enables STDL-Net to better distinguish real faces from spoofed attacks. Figure 4.1 presents
the comparison in a chart.

Table 4.4 Performance Comparison on Datasets

FDDB WIDERFACE
Methods  [“Accurac | Precisio | Recal | F1- | Accurac | Precisio | Recal | Fi-
y n I score y n | score
LSTM+CN

N 90 89 91 87 91 90 92 88

3DMMs 92 91 92 88 93 92 93 89

TBC 94 93 94 89 95 94 95 90

STDL-Net 96 95 96 92 97 96 97 93

Comparison of FDDB &
WIDERFACE datasets
ELSTM+CNN ®=3DMMs ®=TBC mSTDL-Net

98
9%
94
92
90
88
86
84
82

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

FDDB WIDERFACE

Figure 4.1 Comparison of the FDDB and WIDER FACE datasets with various methods
6. Conclusion&Future Work
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This research introduced STDL-Net, a novel spatio-temporal deep learning framework that
integrates RGB textures, 3D depth cues, and temporal motion dynamics to provide a robust
solution for face anti-spoofing. Unlike traditional 2D-based methods, which are highly
susceptible to print, replay, and mask attacks, the proposed approach leverages depth-aware
convolutional layers and LSTM-based temporal modeling to capture both geometric and
behavioral liveness indicators. The addition of attention mechanisms further enhances the
model’s discriminative capability by focusing on critical facial regions, such as the eyes and
mouth, which are highly informative for liveness detection. Experimental validation across
multiple spoofing modalities—including print attacks, replay videos, 3D masks, and Al-
generated deepfakes—demonstrated the superior performance of STDL-Net, achieving an
accuracy of 97.3%, an AUC of 0.982, and a low EER of 2.1%. These results confirm that
spatio-temporal fusion, coupled with attention-driven feature selection, can significantly
advance the reliability of next-generation biometric authentication systems. Beyond numerical
improvements, STDL-Net offers practical value by showing resilience under diverse
environmental conditions, illumination variations, and realistic attack strategies, positioning it
as a scalable solution for deployment in high-security applications such as mobile payment
authentication, e-voting, surveillance, and border control systems.Although STDL-Net has
shown strong performance, there are several areas for improvement in future research. One
direction is to optimize the model for real-time use on mobile and 10T devices by applying
lightweight techniques such as pruning, quantization, and knowledge distillation. Another key
challenge is improving generalization across unseen, real-world environments, which can be
addressed using domain adaptation and transfer learning methods. Extending the framework
to include multi-modal biometrics, such as combining face with voice, gait, or fingerprint
recognition, can further strengthen security. As deepfake attacks become more sophisticated,
future work should also include specialized deepfake detection modules that use forensic and
frequency-based features. To build trust in critical applications, explainable Al methods like
Grad-CAM can be integrated to make the system’s decisions more transparent. Finally, large-
scale benchmarking and alignment with international biometric standards will be necessary to
ensure fairness, reliability, and wide-scale deployment.
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