
LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT 

ISSN:1581-5374 E-ISSN:1855-363X  

VOL. 23, NO. S5(2025) 

 
 

378 
 

ARTIFICIAL INTELLIGENCE IN PHARMACY: REGULATORY CHALLENGES 

AND JURISDICTIONAL 

 

Mithul V Mammen¹, Abhishek Suman², Abhishek Anand¹, Amit Kumar²*,  

Dimple Pratap Singh² 

 

¹Department of Pharmacy Practice, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer 

University, Moradabad, Uttar Pradesh, India – 244001 

²Shri Venkateshwara School of Pharmacy, Shri Venkateshwara University, Rajabpur, Gajraula, Amroha, Uttar 

Pradesh, India – 244236 

 

Corresponding Author:Amit Kumar 
Shri Venkateshwara School of Pharmacy, Shri Venkateshwara University, Rajabpur, Gajraula, Amroha, Uttar 

Pradesh, India – 244236 

E-mail: amittph1812017@gmail.com 

Ph:9653941766 

 

 

Abstract 

Artificial Intelligence (AI) is reshaping pharmacy through its applications in drug discovery, development, 

clinical trials, pharmacovigilance, personalized medicine, and supply chain optimization. By enabling faster, 

data-driven insights, AI holds the potential to reduce costs, accelerate innovation, and improve patient 

outcomes. However, the regulatory landscape governing AI in pharmacy remains fragmented and inconsistent 

across jurisdictions. This review provides a comprehensive overview of the evolution and applications of AI in 

pharmacy, examining ethical and legal implications, existing regulatory frameworks, and jurisdictional 

disparities. It further analyzes case studies from the United States, European Union, United Kingdom, China, 

and India to highlight successes and shortcomings in regulatory approaches. Key barriers—including rapid 

technological evolution, lack of standardization, data governance issues, and limited regulatory capacity—are 

discussed. Finally, policy recommendations emphasize the need for adaptive, globally harmonized frameworks 
that balance innovation with patient safety, transparency, and equitable access. By addressing these challenges, 

regulators can ensure that AI fulfills its promise of transforming pharmaceutical care into a more effective, 

ethical, and patient-centered system. 
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1. Introduction 

Artificial Intelligence (AI) is increasingly recognized as a transformative force in healthcare, 

with pharmacy being one of its most promising areas of application. The discipline of 

pharmacy encompasses a broad spectrum of activities—ranging from drug discovery, 

formulation, and clinical practice to pharmacovigilance and regulatory affairs. Each of these 

domains is data-intensive, involving complex decision-making processes that can benefit 

from advanced computational support. AI, encompassing machine learning (ML), natural 

language processing (NLP), and deep learning, offers novel approaches to optimize 

efficiency, improve patient outcomes, and accelerate pharmaceutical innovation (1,2). 

Over the past decade, exponential growth in biomedical data has driven the adoption of AI 

tools across pharmaceutical sciences. For instance, electronic health records, genomics 

databases, chemical compound libraries, and adverse drug reaction reports represent vast 

resources that cannot be fully utilized through conventional analytical methods. AI-enabled 

systems are capable of processing these data sets to uncover patterns, predict drug 

interactions, and recommend tailored therapeutic regimens (3). This capability has profound 

implications for drug development, personalized medicine, and clinical pharmacy practice. 
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The Promise of AI in Drug Discovery and Development 

Traditional drug discovery is often described as time-consuming, costly, and inefficient, with 

an average development timeline exceeding 10 years and costs often surpassing billions of 

dollars (4). AI has emerged as a catalyst in this process by identifying potential drug 

candidates, predicting their biological activity, and even repurposing existing drugs for new 

indications. Notably, AI-driven platforms have contributed to accelerating research during 

global health crises, including the COVID-19 pandemic, by assisting in vaccine development 

and drug repurposing studies (5). 

AI in Pharmacy Practice and Patient Care 

Within pharmacy practice, AI supports clinical decision-making through predictive models 

that identify potential adverse drug reactions, optimize dosing regimens, and monitor patient 

adherence. For example, machine learning algorithms can analyze a patient’s clinical history 

and genetic profile to recommend personalized therapeutic plans (6). Furthermore, AI 

chatbots and virtual pharmacy assistants are being tested for use in community and hospital 

pharmacy settings, offering counseling support and medication reminders to patients (7). 

The Emerging Regulatory Challenge 

Despite its potential, AI adoption in pharmacy faces significant regulatory and ethical 

hurdles. Unlike conventional pharmaceuticals or medical devices, AI-based systems evolve 

dynamically as they learn from new data, raising questions about accountability and 

compliance. Regulatory agencies such as the U.S. Food and Drug Administration (FDA), the 

European Medicines Agency (EMA), and Japan’s Pharmaceuticals and Medical Devices 

Agency (PMDA) are actively working to establish guidelines, yet disparities in regulatory 

frameworks create global inconsistencies (8). These jurisdictional differences are particularly 

critical in pharmacy, where AI applications often involve sensitive patient data, cross-border 

data transfers, and compliance with privacy laws such as the General Data Protection 

Regulation (GDPR) in the European Union. 

Ethical and Social Considerations 

Beyond regulatory concerns, ethical issues such as transparency, algorithmic bias, and data 

privacy remain major challenges. For example, AI models trained on incomplete or non-

representative datasets may exacerbate health inequities by providing biased 

recommendations (9). Similarly, the reliance on patient-level data for model training requires 

robust safeguards to ensure compliance with ethical standards and privacy laws. 

Scope of This Review 

This review provides a comprehensive overview of AI in pharmacy, with a particular focus 

on regulatory and jurisdictional challenges. Section 2 examines the historical evolution of AI 

in pharmacy, while Section 3 details its major applications in drug discovery, 

pharmacovigilance, personalized medicine, and clinical decision-making. Sections 4 through 

7 address ethical dilemmas, global regulatory frameworks, jurisdictional conflicts, and case 

studies. Sections 8 and 9 discuss barriers to effective regulation and propose 

recommendations for harmonized governance. The paper concludes with a reflection on the 

balance between innovation and regulation in ensuring safe, equitable, and efficient AI 

integration in pharmacy. 
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Table 1: Key Drivers of AI Adoption in Pharmacy 

Driver Description 

Drug Discovery 

Efficiency 

AI reduces time and cost of new molecule identification. 

Personalized Medicine Tailors treatment based on patient genetics and medical history. 

Pharmacovigilance Detects adverse drug reactions and improves patient safety. 

Supply Chain 

Optimization 

Streamlines inventory management and prevents drug shortages. 

Clinical Decision Support Assists pharmacists and prescribers with evidence-based 

recommendations. 

 

Figure 1: Conceptual Model of AI Applications in Pharmacy 

 
2. Evolution of AI in Pharmacy 

The application of Artificial Intelligence (AI) in pharmacy has evolved over several decades, 

moving from early computational models to today’s advanced machine learning and deep 

learning systems. This evolution has been shaped by advances in computing, increased data 

availability, and the growing complexity of pharmaceutical science. Understanding this 

trajectory helps clarify the current capabilities of AI as well as the challenges regulators face 

in integrating these technologies into healthcare systems. 

2.1 Early Computational Approaches 

The roots of AI in pharmacy lie in computational chemistry and the early adoption of 

quantitative structure–activity relationship (QSAR) models in the 1960s and 1970s. These 

models attempted to correlate the chemical structure of compounds with their biological 

activity (11). By the 1980s, molecular docking techniques allowed researchers to simulate 

interactions between drugs and biological targets (12). Although limited by computational 

power and small datasets, these tools were instrumental in reducing experimental workloads 

and guiding drug design (13). 

In parallel, pharmacy practice began experimenting with rule-based clinical decision support 

systems (CDSS). These systems were designed to assist pharmacists in identifying potential 

drug–drug interactions and contraindications (14). While rudimentary, they marked the 

beginning of algorithmic reasoning in clinical pharmacy. 
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2.2 Machine Learning Enters Drug Discovery 

The 1990s and early 2000s saw the introduction of machine learning (ML) methods into 

pharmaceutical research. Unlike traditional computational models, ML algorithms could 

learn patterns directly from large datasets. Support vector machines and artificial neural 

networks were applied to classify compounds, predict pharmacokinetic properties, and model 

toxicity (15,16). 

This era coincided with the rise of high-throughput screening (HTS) technologies and 

genomics, which generated vast amounts of biological and chemical data. Traditional 

statistical approaches struggled to manage this data volume, whereas ML algorithms proved 

more capable of handling large, multidimensional datasets (17). This shift allowed for 

predictive modeling at a scale not possible in earlier decades. 

2.3 Big Data and the Rise of Deep Learning 

The 2010s marked a turning point as “big data” and exponential increases in computing 

power accelerated AI research. Deep learning (DL), a subset of ML based on artificial neural 

networks with multiple layers, demonstrated unprecedented accuracy in tasks such as image 

recognition, natural language processing, and molecular property prediction (18). 

In pharmacy, DL techniques enabled automated drug discovery pipelines. Convolutional 

neural networks (CNNs) were used to classify compounds and analyze medical images, while 

generative adversarial networks (GANs) and recurrent neural networks (RNNs) allowed 

researchers to design novel molecules with desirable pharmacological properties (19,20). One 

striking example was the use of generative models to design potential COVID-19 protease 

inhibitors in record time (21). 

Pharmacovigilance also benefited from these advances. AI algorithms began mining 

electronic health records, biomedical literature, and even social media to identify potential 

adverse drug events (ADEs) faster than conventional reporting systems (22). Regulatory 

authorities also adopted AI tools to assist in reviewing clinical trial submissions and post-

marketing surveillance (23). 

2.4 AI in Personalized Medicine and Pharmacy Practice 

The convergence of genomics, electronic health records, and wearable devices created 

opportunities for AI-driven personalized medicine. Pharmacogenomic data, while promising, 

posed interpretation challenges due to its complexity. AI models bridged this gap by 

integrating genetic, clinical, and demographic information to recommend tailored drug 

regimens (24). 

In clinical pharmacy practice, AI-powered CDSS expanded beyond basic interaction-

checking. Modern systems now recommend individualized dosing, predict non-adherence, 

and assist pharmacists in optimizing polypharmacy in older patients (25). In addition, AI-

driven supply chain systems were adopted by hospitals and community pharmacies to 

optimize inventory, reduce waste, and predict demand spikes during health crises (26). 

2.5 Regulatory Recognition of AI 

A critical stage in the evolution of AI in pharmacy was its recognition by regulatory 

authorities. The U.S. Food and Drug Administration (FDA) launched its Digital Health 

Innovation Action Plan in 2017, acknowledging the need to regulate AI-based tools, 

particularly adaptive algorithms that change over time (27). The European Medicines Agency 

(EMA) and Japan’s Pharmaceuticals and Medical Devices Agency (PMDA) followed with 

initiatives focusing on AI in clinical trials and drug safety monitoring (28). 

International organizations such as the International Coalition of Medicines Regulatory 

Authorities (ICMRA) have emphasized the importance of harmonized regulatory frameworks 
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for AI across borders (29). This regulatory engagement signaled AI’s transition from a 

research tool to a regulated technology shaping healthcare policy. 

2.6 Current Trends and Future Outlook 

Current AI trends in pharmacy focus on transparency, accountability, and integration with 

other emerging technologies. Explainable AI (XAI) is gaining prominence, aiming to make 

AI decision-making interpretable for clinicians and regulators (30). Similarly, blockchain 

technology is being explored to secure pharmaceutical supply chains, improve traceability, 

and prevent counterfeiting (31). 

The trajectory of AI in pharmacy reflects a shift from computational assistance to 

autonomous systems capable of generating hypotheses, designing molecules, and supporting 

complex regulatory decisions. This ongoing evolution underscores not only the vast potential 

of AI but also the need for adaptive, harmonized, and transparent governance frameworks 

(32,33). 

 

Table 2: Evolutionary Stages of AI in Pharmacy 

Period Key Developments 

1960s–

1980s 

QSAR models; molecular docking; early rule-based CDSS 

1990s–

2000s 

Introduction of machine learning; compound classification; pharmacokinetic 

modeling 

2010s Deep learning applications; big data integration; AI in pharmacovigilance 

2020s Explainable AI; blockchain integration; regulatory harmonization efforts 

 

3. Applications of AI in Pharmacy 

Artificial Intelligence (AI) has transitioned from an emerging technology to a transformative 

force in pharmacy. Its applications span the entire pharmaceutical value chain, from early-

stage drug discovery to clinical decision support, supply chain optimization, and personalized 

medicine. Each application reflects the synergy between computational power, data 

integration, and the ability of algorithms to identify patterns beyond human cognitive limits. 

This section provides a structured review of major AI applications in pharmacy. 

3.1 AI in Drug Discovery and Development 

Drug discovery is historically costly and time-consuming, with average timelines exceeding 

10 years and costs surpassing billions of dollars. AI has introduced significant efficiencies in 

identifying druggable targets, screening compounds, and predicting pharmacological 

properties (34). 

Machine learning (ML) and deep learning (DL) methods have been applied to: 

 Target identification – AI models integrate omics data, biomedical literature, and 

protein structures to identify novel drug targets (35). 

 Virtual screening – AI algorithms outperform traditional docking by predicting 

binding affinities with greater accuracy (36). 

 De novo drug design – Generative models create novel molecules with optimized 

properties, accelerating lead optimization (37). 

 Predicting clinical trial outcomes – AI forecasts trial success probabilities using 

historical datasets and biomarkers (38). 
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Figure 2: Evolutionary Path of AI in Pharmacy 

 
A milestone example was Insilico Medicine’s AI-designed preclinical candidate for 

idiopathic pulmonary fibrosis, which progressed to clinical trials in under 18 months, 

demonstrating accelerated drug discovery timelines (39). 

3.2 AI in Pharmacovigilance 

Pharmacovigilance—the monitoring of adverse drug events (ADEs)—is critical for patient 

safety. Traditional systems rely on voluntary reporting, often delayed and incomplete. AI 

addresses these limitations by analyzing real-world evidence (RWE) such as electronic health 

records (EHRs), clinical notes, and social media content (40). 

Natural language processing (NLP) is particularly effective in detecting ADEs from 

unstructured clinical narratives (41). Furthermore, machine learning enhances signal 

detection by identifying statistically significant associations between drugs and adverse 

outcomes (42). 

For example, the FDA’s Sentinel Initiative incorporates AI for near real-time safety 

monitoring of marketed drugs, significantly reducing latency in pharmacovigilance activities 

(43) 

3.3 Personalized Medicine and Pharmacogenomics 

AI plays a pivotal role in tailoring therapy to individual patient characteristics, particularly 

genetic profiles. Pharmacogenomics generates complex datasets that require advanced 

analytics for interpretation. AI integrates genomic, transcriptomic, and metabolomic data 

with clinical records to predict optimal drug selection and dosing (44). 

In oncology, AI-driven models recommend treatment regimens based on tumor genomics, 

maximizing efficacy while minimizing toxicity (45). Similarly, AI supports individualized 

dosing in anticoagulant therapy, where small variations in metabolism significantly affect 

outcomes (46). 

The integration of wearable devices and mobile health apps with AI further enhances 

personalized medicine by enabling real-time therapeutic monitoring and adaptive dosing 

strategies (47). 
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3.4 Clinical Decision Support Systems (CDSS) 

CDSS are vital tools in pharmacy practice, enabling pharmacists and clinicians to optimize 

drug therapy. Modern AI-powered CDSS extend beyond rule-based alerts to predictive 

modeling and contextual recommendations (48). 

Key applications include: 

 Drug–drug interaction prediction using ML models trained on vast drug databases 

(49). 

 Non-adherence prediction through patient behavior modeling (50). 

 Polypharmacy optimization in elderly populations with multimorbidity (51). 

 Dose individualization using Bayesian AI frameworks (52). 

AI-based CDSS not only reduce prescribing errors but also support pharmacists in complex 

therapeutic decisions, enhancing clinical outcomes. 

3.5 Supply Chain and Pharmaceutical Logistics 

AI enhances pharmaceutical supply chains by forecasting demand, managing inventories, and 

identifying counterfeit drugs (53). Machine learning algorithms analyze prescription trends, 

epidemiological data, and seasonal factors to optimize stock levels, reducing shortages and 

waste. 

Blockchain integrated with AI strengthens drug traceability and combats falsified medicines, 

particularly in global supply chains where vulnerabilities are significant (54). 

During the COVID-19 pandemic, AI-assisted forecasting models were deployed to anticipate 

surges in demand for critical medications, ensuring continuity of care in resource-limited 

settings (55). 

 

3.6 AI in Clinical Trials 

AI improves the efficiency of clinical trial design, recruitment, and monitoring. Predictive 

analytics identifies patients most likely to respond to therapies, while NLP extracts eligibility 

criteria from trial registries and EHRs (56). AI-enabled remote monitoring ensures adherence 

and captures patient-reported outcomes in real time (57). 

These innovations reduce trial costs, enhance patient safety, and accelerate regulatory 

approval timelines, further demonstrating AI’s value in pharmaceutical development (58). 

Table 3: Applications of AI in Pharmacy 

Application Domain AI Techniques Applied Key Benefits 

Drug Discovery ML, DL, generative models Faster target ID, optimized 

molecules 

Pharmacovigilance NLP, signal detection 

algorithms 

Early ADE detection, real-time 

surveillance 

Personalized Medicine Genomic AI models, 

adaptive dosing 

Precision therapy, reduced toxicity 

Clinical Decision 

Support 

Predictive ML, Bayesian AI Safer prescribing, polypharmacy 

management 

Supply Chain & 

Logistics 

ML forecasting, blockchain-

AI 

Reduced shortages, counterfeit 

detection 

Clinical Trials Predictive analytics, NLP, 

remote AI 

Efficient recruitment, reduced costs 

 

4. Ethical and Legal Considerations in AI-Driven Pharmacy 

The rapid integration of Artificial Intelligence (AI) into pharmaceutical research, clinical 

practice, and regulatory processes has generated profound ethical and legal challenges. While 
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AI promises improved efficiency, precision, and innovation in drug development and 

pharmacy practice, it also raises concerns about transparency, accountability, data privacy, 

and fairness. Addressing these issues is essential to ensure that AI-driven pharmacy systems 

are not only effective but also ethically responsible and legally compliant. 

4.1 Transparency and Explainability 

A central ethical challenge in AI is the “black box” nature of many algorithms, particularly 

deep learning models. These systems often generate outputs that lack interpretability, making 

it difficult for pharmacists, clinicians, and regulators to understand how a decision was 

reached (59). In high-stakes domains such as drug safety monitoring and prescribing, opaque 

decision-making may undermine trust and hinder adoption (60). 

Explainable AI (XAI) has emerged as a solution, offering methods to make algorithmic 

reasoning more interpretable for end-users (61). However, balancing explainability with 

predictive accuracy remains a persistent challenge. 

4.2 Accountability and Liability 

Determining accountability when AI systems make errors is another pressing concern. For 

instance, if an AI-driven clinical decision support system recommends an inappropriate drug 

regimen leading to patient harm, questions arise over whether responsibility lies with the 

pharmacist, the developer, or the institution deploying the system (62). 

Current legal frameworks often struggle to assign liability in cases involving autonomous AI, 

especially when algorithms evolve through continuous learning. Proposals include joint 

liability models, software certification schemes, and mandatory AI auditing to mitigate risks 

(63). 

4.3 Patient Privacy and Data Governance 

AI systems in pharmacy rely heavily on patient data, including genetic information, 

electronic health records, and behavioral data from wearable devices. While such data 

enables personalized medicine, it also raises risks related to data breaches, unauthorized 

sharing, and secondary use without consent (64). 

Legal instruments such as the European Union’s General Data Protection Regulation (GDPR) 

and the U.S. Health Insurance Portability and Accountability Act (HIPAA) set standards for 

privacy protection, but enforcing compliance in cross-border AI collaborations remains 

difficult (65). Emerging frameworks advocate for patient-centric consent models and 

federated learning approaches, which allow algorithms to learn from decentralized data 

without direct sharing (66). 

4.4 Bias, Equity, and Fair Access 

AI algorithms may inadvertently perpetuate existing healthcare disparities if trained on biased 

datasets. For example, underrepresentation of minority groups in training data could lead to 

inaccurate drug efficacy predictions or higher rates of adverse drug events in these 

populations (67). 

Ethical use of AI in pharmacy therefore requires diverse, representative datasets and 

algorithmic audits to identify and mitigate bias. From a legal perspective, discriminatory 

outcomes may expose healthcare institutions to liability under civil rights and health equity 

legislation (68). 

4.5 Intellectual Property and Data Ownership 

AI introduces novel challenges in intellectual property (IP). Traditional IP frameworks are 

designed for human inventors, yet AI systems are increasingly capable of generating new 

drug candidates independently (69). Legal debates continue over whether AI can be 

recognized as an inventor and how ownership rights should be distributed between 

developers, institutions, and sponsors (70). 
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Similarly, ownership of patient-derived data remains contested. While patients are the data 

source, pharmaceutical companies and research organizations often claim rights to use such 

data for algorithm development. Resolving these disputes requires clearer contractual 

frameworks and potentially new forms of “data stewardship rights” (71). 

4.6 Global Legal Variability 

AI-driven pharmacy operates across jurisdictions with highly variable legal environments. 

The European Union emphasizes strict data privacy and algorithmic transparency through the 

GDPR and the proposed AI Act, while the U.S. adopts a more market-driven, innovation-

oriented regulatory approach (72). Low- and middle-income countries face additional 

challenges in balancing innovation with resource constraints and weak data protection laws 

(73). 

This fragmentation complicates cross-border collaborations, particularly in multinational 

clinical trials and global pharmacovigilance efforts. Harmonization of AI governance remains 

a priority for international regulatory bodies. 

Table 4: Ethical and Legal Challenges in AI for Pharmacy 

Challenge Ethical Concern Legal Implication 

Transparency Black-box algorithms Need for explainability standards 

Accountability Errors in AI-driven 

decisions 

Unclear liability allocation 

Patient Privacy Data misuse and breaches Compliance with GDPR, HIPAA, etc. 

Bias and Equity Healthcare disparities Potential legal liability for 

discrimination 

Intellectual 

Property 

AI-generated drug designs Debate over inventorship and data 

rights 

Global Variability Regulatory inconsistency Barriers to multinational collaboration 

 

 

 

Figure 3: Ethical-Legal Intersection in AI-Driven Pharmacy 
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5. Regulatory Frameworks for AI in Pharmacy 

The integration of Artificial Intelligence (AI) into pharmacy has outpaced the development of 

comprehensive regulatory frameworks. While regulators worldwide acknowledge AI’s 

potential to accelerate drug discovery, optimize clinical trials, and improve patient safety, 

they also grapple with challenges such as algorithm transparency, adaptive learning, and 

cross-border data governance. This section reviews regulatory approaches across major 

jurisdictions, highlighting convergences and divergences in policy. 

5.1 United States: FDA’s Risk-Based Approach 

The U.S. Food and Drug Administration (FDA) has taken a risk-based approach to regulating 

AI in healthcare and pharmaceuticals. In 2017, the FDA released its Digital Health 

Innovation Action Plan, outlining principles for digital health technologies including AI-

based software (74). This framework was expanded in the 2019 discussion paper on 

Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine 

Learning (AI/ML)-Based Software as a Medical Device (75). 

Key elements include: 

 Software as a Medical Device (SaMD) classification under the International Medical 

Device Regulators Forum (IMDRF) framework. 

 Pre-certification program, focusing on developer accountability rather than product-

by-product approval. 

 Good Machine Learning Practices (GMLP) guidance, ensuring quality in AI model 

development (76). 

In pharmacy, the FDA applies these principles to AI-driven drug discovery tools, 

pharmacovigilance systems, and digital endpoints in clinical trials. However, adaptive 

algorithms that evolve post-deployment remain a regulatory gray area (77). 

5.2 European Union: GDPR and the AI Act 

The European Union (EU) combines strict data protection laws with emerging AI-specific 

legislation. The General Data Protection Regulation (GDPR) enforces transparency, consent, 

and data minimization in AI-driven pharmacy applications (78). Article 22 of the GDPR 

further prohibits fully automated decision-making that significantly affects individuals unless 

explicit consent or safeguards are in place (79). 

In 2021, the European Commission proposed the Artificial Intelligence Act (AI Act), the first 

attempt at a horizontal regulatory framework for AI (80). The AI Act categorizes systems 

into four risk levels—unacceptable, high-risk, limited-risk, and minimal-risk. High-risk AI, 

including medical and pharmaceutical applications, will require stringent conformity 

assessments, human oversight, and robustness checks (81). 

The EU’s regulatory approach emphasizes patient rights and algorithmic accountability but 

may impose heavy compliance burdens on pharmaceutical innovators (82). 

5.3 United Kingdom: MHRA’s Agile Framework 

Post-Brexit, the UK’s Medicines and Healthcare products Regulatory Agency (MHRA) is 

developing a more flexible framework for AI. The Software and AI as a Medical Device 

Change Programme emphasizes dynamic oversight and international harmonization (83). 

Distinctive elements include: 

 Continuous monitoring of AI algorithms rather than static approvals. 

 Collaboration with NICE (National Institute for Health and Care Excellence) to assess 

cost-effectiveness of AI-based interventions (84). 

 Patient involvement in regulatory evaluations, ensuring transparency and trust. 

This agile approach positions the UK as a testbed for AI governance models balancing safety 

and innovation (85). 
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5.4 Canada: Health Canada’s Regulatory Initiatives 

Health Canada has aligned with FDA and EU efforts by adopting the IMDRF framework for 

SaMD and developing guidance for AI/ML-based medical devices (86). In 2021, Health 

Canada launched a pilot project on adaptive AI regulation, focusing on real-world 

performance monitoring and transparency (87). 

Canada’s bilingual, multicultural context also raises unique challenges in ensuring that AI-

driven pharmacy tools are linguistically inclusive and equitable (88). 

5.5 Asia-Pacific: Diverse Approaches 

Japan: PMDA and AI Integration 

Japan’s Pharmaceuticals and Medical Devices Agency (PMDA) actively promotes AI in drug 

development and clinical trials. The agency has introduced fast-track approval processes for 

AI-assisted technologies and encourages public–private collaborations (89). 

China: State-Led AI Strategy 

China’s National Medical Products Administration (NMPA) integrates AI regulation into its 

broader national AI strategy. The country has invested heavily in AI-enabled 

pharmacovigilance and clinical trial platforms (90). However, limited transparency and 

differences in data governance norms pose challenges for global harmonization (91). 

India: Emerging Regulatory Landscape 

India, with its large pharmaceutical industry and growing digital health sector, has yet to 

establish a comprehensive AI regulation. Current frameworks focus on telemedicine and data 

privacy, but draft policies suggest movement toward structured AI oversight (92). 

5.6 International Harmonization Efforts 

The International Medical Device Regulators Forum (IMDRF) and the International Coalition 

of Medicines Regulatory Authorities (ICMRA) play central roles in aligning global AI 

standards (93). Key areas of focus include: 

 Harmonized definitions of AI and SaMD. 

 Common principles for Good Machine Learning Practices. 

 Cross-border pharmacovigilance data sharing. 

The World Health Organization (WHO) has also published guidance on the ethics and 

governance of AI in health, emphasizing inclusivity and equity in global adoption (94). 

5.7 Challenges in Current Frameworks 

Despite progress, regulatory frameworks face persistent challenges: 

 Adaptive algorithms that evolve after deployment. 

 Cross-border data governance and conflicts between GDPR, HIPAA, and local laws. 

 Balancing innovation with compliance, particularly for smaller biotech firms. 

 Regulatory capacity in low- and middle-income countries. 

Future frameworks must address these challenges while ensuring patient safety and fostering 

innovation (95–98). 

Table 5: Comparison of AI Regulatory Frameworks Across Jurisdictions 

Jurisdiction Primary Frameworks Key Features Challenges 

USA FDA Digital Health 

Plan, GMLP 

Risk-based, developer 

pre-certification 

Adaptive algorithms, 

evolving oversight 

EU GDPR, AI Act Rights-based, high-risk 

classification 

Heavy compliance burden 

UK MHRA AI Change 

Programme 

Agile, continuous 

monitoring 

Post-Brexit divergence, 

harmonization issues 

Canada IMDRF alignment, 

pilot projects 

Real-world performance 

monitoring 

Bilingual inclusivity, 

resource challenges 
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Japan PMDA initiatives Fast-track approvals, AI 

in trials 

Balancing innovation with 

oversight 

China NMPA national AI 

strategy 

State-led, large-scale 

integration 

Transparency, global 

harmonization 

India Draft digital health 

and AI policies 

Growing focus on AI 

regulation 

Lack of comprehensive 

frameworks 

 

Fragmentation of Regulatory Approaches 

Different jurisdictions adopt distinct philosophies toward AI regulation. The United States 

follows a risk-based and innovation-oriented approach, emphasizing developer accountability 

and adaptive oversight through the FDA (99). In contrast, the European Union prioritizes 

fundamental rights and algorithmic transparency under GDPR and the AI Act (100). 

These diverging frameworks complicate multinational pharmaceutical operations. For 

example, an AI-driven pharmacovigilance tool approved in the U.S. may face delays or 

denial in the EU due to stricter data privacy rules (101). 

6.2 Cross-Border Data Governance 

AI applications in pharmacy depend on access to large, diverse datasets, but cross-border data 

sharing faces significant legal hurdles. The GDPR imposes strict conditions for transferring 

personal health data outside the EU, while U.S. HIPAA rules offer more flexibility (102). 

China’s Data Security Law and Personal Information Protection Law (PIPL) further restrict 

cross-border transfers, complicating international clinical trials and collaborative 

pharmacovigilance (103). 

As pharmaceutical companies increasingly rely on global datasets to train AI models, 

conflicts between privacy laws create compliance burdens and limit algorithmic accuracy 

(104). 

6.3 Variability in Liability Frameworks 

Liability allocation for AI-driven decisions differs across legal systems. In common law 

jurisdictions (e.g., U.S., UK, Canada), liability is often assigned through negligence 

standards, leaving uncertainty for evolving algorithms (105). In civil law jurisdictions (e.g., 

EU countries, Japan), codified laws provide stricter standards for consumer protection, 

increasing regulatory burden (106). 

This variability complicates the deployment of AI-based clinical decision support systems in 

pharmacy practice. Multinational companies may face overlapping or contradictory liability 

claims if adverse events occur across different regions (107). 

6.4 Resource Disparities Between High- and Low-Income Countries 

High-income countries (HICs) have greater regulatory capacity, technological infrastructure, 

and investment in AI governance. In contrast, low- and middle-income countries (LMICs) 

often lack robust regulatory bodies, digital infrastructure, and funding to implement AI 

oversight (108). 

This disparity risks creating a two-tiered system, where patients in HICs benefit from 

advanced AI-enabled pharmacy while LMICs lag behind, relying on less-regulated, imported 

systems that may not align with local contexts (109). 

6.5 Ethical and Cultural Divergences 

Jurisdictional challenges are also shaped by ethical and cultural differences. Western 

countries emphasize individual privacy rights, while some Asian jurisdictions prioritize 

collective welfare and public health outcomes (110). These cultural divergences influence 

regulatory decisions on issues such as consent models, algorithmic explainability, and 

acceptable risk thresholds. 
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For example, Japan’s AI strategy emphasizes trust and transparency, whereas China’s 

approach prioritizes rapid deployment of AI for public health surveillance (111). Such 

variations affect global harmonization of pharmaceutical AI tools. 

6.6 Lack of Harmonization in International Standards 

Although international bodies like WHO, IMDRF, and ICMRA are working toward 

harmonized guidelines, progress remains slow. AI technologies evolve faster than regulatory 

consensus, leading to gaps in standard definitions, validation methods, and performance 

metrics (112). 

Without harmonized standards, pharmaceutical companies face costly duplication of 

regulatory submissions across multiple jurisdictions, slowing innovation and global rollout of 

AI-enabled drugs and services (113). 

Table 6: Jurisdictional Challenges in AI Regulation for Pharmacy 

Challenge Example Region/Case Impact on Pharmacy AI 

Deployment 

Regulatory 

Fragmentation 

FDA (USA) vs AI Act (EU) Delays in multinational 

approvals 

Cross-Border Data 

Governance 

GDPR (EU), HIPAA (US), 

PIPL (China) 

Barriers to international data 

sharing 

Liability Variability Negligence (USA) vs Codified 

Laws (EU) 

Uncertainty in accountability 

for errors 

Resource Disparities HIC vs LMIC regulatory 

infrastructure 

Unequal global access to AI 

tools 

Ethical Divergences Individual vs collective 

approaches 

Inconsistent standards for 

consent/privacy 

Lack of Harmonization WHO/IMDRF ongoing efforts Regulatory duplication, slower 

innovation 

 

7. Case Studies of AI Regulation in Pharmacy 

Case studies provide valuable insights into how regulatory frameworks are applied to real-

world AI systems in pharmacy and drug development. By examining successful and 

problematic implementations, lessons can be drawn to guide future regulation. 

7.1 AI in Pharmacovigilance: FDA’s Sentinel System 

The FDA’s Sentinel Initiative, launched in 2008, has increasingly incorporated AI and 

machine learning to monitor adverse drug events using electronic health records and 

insurance claims data (114). AI algorithms enable earlier detection of safety signals and 

reduce false positives compared to traditional statistical methods (115). 

Regulatory lessons: While successful in improving post-marketing surveillance, Sentinel 

highlights the importance of algorithm validation and ongoing monitoring to ensure 

continued accuracy (116). 

7.2 EU Case: AI-Driven Drug Discovery by Exscientia 

Exscientia, a UK-based company, developed the first AI-designed drug candidate (DSP-

1181), which entered clinical trials in collaboration with Sumitomo Dainippon Pharma in 

2020 (117). Regulatory agencies, including the European Medicines Agency (EMA), worked 

closely with the company to establish standards for preclinical validation of AI-generated 

molecules. 

Regulatory lessons: The case illustrates how regulators can adopt a collaborative approach 

with innovators to develop new frameworks for novel technologies (118). 
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7.3 AI for Clinical Decision Support: UK NHS Deployment 

The UK National Health Service (NHS) piloted AI-driven decision support tools to optimize 

antibiotic prescribing and reduce antimicrobial resistance (119). Regulatory oversight by the 

Medicines and Healthcare products Regulatory Agency (MHRA) required risk classification 

and conformity assessments under medical device regulations. 

Regulatory lessons: The pilot highlighted the importance of explainability and clinician 

oversight in building trust in AI recommendations (120). 

7.4 China’s Use of AI in Drug Supply Chain Monitoring 

China has implemented AI for drug authenticity verification and supply chain monitoring to 

combat counterfeit medicines (121). The National Medical Products Administration (NMPA) 

mandates integration of AI-enabled track-and-trace systems within pharmaceutical supply 

chains. 

Regulatory lessons: While effective in reducing counterfeit drugs, China’s centralized model 

raises questions about data transparency and patient privacy protections (122). 

7.5 India’s Early-Stage AI Regulatory Experiences 

India’s pharmaceutical sector has adopted AI primarily in clinical trials and drug 

manufacturing optimization. Regulatory oversight remains fragmented, with guidelines 

emerging under the Central Drugs Standard Control Organization (CDSCO) and the Ministry 

of Electronics and Information Technology (MeitY) (123). 

Regulatory lessons: India’s case highlights the need for harmonized national frameworks to 

support AI in pharmacy, particularly for clinical trials involving multinational sponsors. 

Table 7: Case Studies of AI in Pharmacy Regulation 

Case Study Jurisdiction AI Application Regulatory Lesson Learned 

FDA Sentinel 

System 

USA Pharmacovigilance Need for continuous 

algorithm monitoring 

Exscientia AI drug 

discovery 

EU/UK AI-generated molecules Collaborative regulation 

with innovators 

NHS Clinical 

Decision Support 

UK Antibiotic prescribing Importance of explainability 

& oversight 

AI in Supply Chain 

Monitoring 

China Counterfeit drug 

detection 

Balancing innovation with 

data transparency 

AI in Clinical Trials India Trial design & 

manufacturing 

Need for harmonized 

regulatory frameworks 

 

8. Barriers to Effective Regulation of AI in Pharmacy 

Despite significant progress in AI governance, several barriers hinder the effective regulation 

of Artificial Intelligence (AI) in pharmacy. These barriers span technological, regulatory, and 

socio-economic dimensions, highlighting the need for robust yet adaptable frameworks to 

ensure safe and equitable implementation. 

8.1 Rapid Technological Evolution 

AI technologies, particularly deep learning and reinforcement learning, evolve faster than 

regulatory frameworks. While agencies such as the FDA and EMA release periodic guidance, 

these documents quickly become outdated as new architectures and applications emerge 

(124). This creates a regulatory lag, where oversight cannot keep pace with innovation. 

8.2 Lack of Standardization 

There is no universally accepted definition of AI in healthcare or pharmacy. Variations in 

terminology, validation metrics, and performance benchmarks complicate international 
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harmonization (125). For instance, the IMDRF’s guidelines for Software as a Medical Device 

(SaMD) provide a foundation, but member states interpret and implement them 

inconsistently. 

Without standardized approaches, pharmaceutical companies face costly duplications in 

testing and approvals when expanding into new markets. 

8.3 Data Privacy and Security Constraints 

AI-driven pharmacy applications rely on sensitive patient data, yet privacy laws differ across 

jurisdictions. The GDPR in Europe, HIPAA in the U.S., and China’s PIPL create a patchwork 

of rules, complicating cross-border collaborations (126). 

Data localization requirements, designed to enhance sovereignty, further fragment AI 

development and limit the use of global datasets. This not only restricts innovation but may 

also lead to biased algorithms if training sets are geographically restricted. 

8.4 Limited Regulatory Capacity 

Many low- and middle-income countries (LMICs) lack the institutional capacity, technical 

expertise, and financial resources to regulate AI effectively (127). Regulators in these regions 

often rely on frameworks imported from high-income countries, which may not reflect local 

needs or constraints. 

This capacity gap risks widening global inequities in access to safe and effective AI-enabled 

pharmacy tools. 

8.5 Industry Resistance and Compliance Burden 

Pharmaceutical companies often perceive AI-specific regulations as adding compliance costs 

and delaying innovation. The EU AI Act, for instance, has been criticized for its heavy 

documentation requirements, which may disproportionately burden startups and smaller 

biotech firms (128). 

Balancing regulatory rigor with industry incentives remains a persistent challenge. 

8.6 Ethical Ambiguities 

While ethical frameworks exist, their practical implementation in regulation is inconsistent. 

Concepts such as algorithmic fairness, transparency, and accountability lack operational 

definitions that can be enforced in legal systems (129). 

The absence of clear guidelines allows for variability in enforcement, potentially 

undermining public trust in AI-driven pharmacy. 

8.7 Public Trust and Acceptance 

Public skepticism toward AI in healthcare persists, fueled by concerns over data misuse, bias, 

and the "black-box" nature of algorithms (130). Without trust, even well-regulated AI 

systems may face resistance from both healthcare professionals and patients. 

 

 

Table 8: Barriers to Effective AI Regulation in Pharmacy 

Barrier Impact on Regulation 

Rapid technological evolution Regulatory lag and outdated guidance 

Lack of standardization Duplicated testing, fragmented oversight 

Data privacy constraints Limited global collaboration, biased datasets 

Limited regulatory capacity Inequitable access in LMICs 

Industry resistance Compliance burden, slower adoption 

Ethical ambiguities Inconsistent enforcement, reduced accountability 

Public trust deficit Barriers to adoption despite regulations 

 

 



LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT 

ISSN:1581-5374 E-ISSN:1855-363X  

VOL. 23, NO. S5(2025) 

 
 

393 
 

Future Directions and Policy Recommendations 

The regulation of Artificial Intelligence (AI) in pharmacy must evolve in parallel with 

technological innovation, global market integration, and societal expectations. As AI 

becomes increasingly central to drug discovery, pharmacovigilance, and clinical decision 

support, regulators face the challenge of ensuring safety, transparency, and accountability 

without stifling innovation. This section outlines key future directions and provides policy 

recommendations for shaping a sustainable and effective regulatory landscape. 

9.1 Adaptive and Dynamic Regulation 

Traditional static regulatory frameworks are poorly suited to rapidly evolving AI models. 

Future regulations should incorporate adaptive mechanisms such as “regulatory sandboxes,” 

which allow controlled experimentation with new technologies under regulator supervision 

(131). Continuous post-market monitoring, similar to pharmacovigilance, should be extended 

to AI algorithms through lifecycle oversight models (132). 

9.2 Global Harmonization of Standards 

With multinational pharmaceutical operations, fragmented national regulations create 

inefficiencies. Harmonization efforts under organizations such as the International Council 

for Harmonisation (ICH) and World Health Organization (WHO) should prioritize AI in 

pharmacy, ensuring consistency in data validation, algorithm testing, and approval 

procedures (133). 

A globally aligned approach could also reduce duplication of compliance costs, encouraging 

smaller biotech firms to innovate without regulatory barriers. 

9.3 Ethical and Explainable AI 

Trustworthy AI requires greater focus on explainability. Black-box models can produce 

highly accurate predictions but undermine transparency, particularly in regulatory 

submissions (134). Regulators should mandate the integration of explainable AI (XAI) 

techniques, ensuring that outputs can be understood and validated by clinicians and auditors. 

Additionally, embedding ethical principles—fairness, accountability, and non-

discrimination—into enforceable regulations can strengthen public trust. 

9.4 Strengthening Data Governance 

Robust AI depends on high-quality data. Future regulations should enhance data governance 

frameworks, focusing on interoperability, anonymization, and secure sharing of patient data 

across borders (135). Policymakers must balance the benefits of large-scale data access with 

privacy protections, ensuring compliance with GDPR, HIPAA, and similar frameworks while 

fostering collaborative datasets. 

9.5 Capacity Building in Low- and Middle-Income Countries 

Equitable global adoption of AI requires capacity building in LMICs. Investments in 

technical training for regulators, cross-border collaborations, and public-private partnerships 

can help bridge the expertise gap (136). Without such efforts, disparities in access to AI-

enabled pharmacy will persist, deepening global health inequities. 

9.6 Public Engagement and Trust-Building 

Future regulation should incorporate public consultation mechanisms to align AI 

governance with societal expectations (137). Transparent communication about the benefits 

and risks of AI in pharmacy will be crucial in reducing skepticism and enhancing adoption by 

both patients and healthcare professionals. 
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Table 9: Key Policy Recommendations for AI Regulation in Pharmacy 

Future Direction Policy Recommendation 

Adaptive regulation Implement regulatory sandboxes and lifecycle oversight 

Global harmonization Promote ICH and WHO-aligned AI standards 

Ethical & explainable AI Mandate use of explainable AI models 

Data governance Enhance interoperability and cross-border sharing 

Capacity building in LMICs Invest in regulatory training and partnerships 

Public trust and engagement Foster transparency and public consultation 
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