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Abstract

The rice hispa Dicladispa armigera (Olivier) is an occasional pest of rice, but when outbreaks occur, they
often cause widespread damage. Reports of rice hispa outbreaks are increasing across Thailand's provinces, with
climate change potentially contributing to outbreak frequency in many areas. This research investigated factors
influencing current rice hispa outbreaks by analyzing agricultural disaster reports from the Ministry of Agriculture and
Cooperatives (July 2010-January 2023) and urgent situation reports (SST. 101) from the Rice Department. A total of 15
documented outbreak events across five central provinces were analyzed for correlations with meteorological factors.
Results showed rice hispa outbreaks were significantly associated with wind direction (r = 0.261, p = 0.044, 95% ClI:
0.008-0.484), explaining 6.8% of outbreak variance. Southwest and southeast monsoon winds coincided with 73% of
recorded outbreaks, supporting atmospheric transport mechanisms for hispa dispersal. Temporal analysis revealed 80%
of outbreaks occurred during June-November, with peak activity in 2018 and 2022 accounting for 73% of total events.
Artificial neural network modeling using weather factors achieved 61.54% prediction accuracy with cross-validation
stability (59.3% + 4.7%). The study provides the first quantitative evidence for climate-outbreak relationships in Thai
rice hispa populations, establishing baseline data for surveillance systems and early warning protocols for integrated
pest management in climate-variable environments.
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1. Introduction

The rice hispa, Dicladispa armigera (Olivier), is an important secondary pest of rice
fields. It belongs to the family Chrysomelidae, order Coleoptera (Dale, 1994). The life cycle of
the dicladispa armigera involves four stages of development (complete metamorphosis).
Complete metamorphosis is when the insect undergoes four stages of metamorphosis: egg, larva,
pupa, and adult (Figure 1). The life cycle from egg to adult is 15-20 days. The average lifespan
of an adult male is 83.20 days and the average lifespan of an adult female is 90.40 days (Dutta
and Hazarika, 1995). The average lifespan is about 83-90 days. It is a multivoltine species and
has a relatively high reproductive rate because it can lay a large number of eggs, consisting of 4-
6 generations per year. It depends on the climatic conditions (Sen and Chakravorty, 1970; Karim,
1986; Pathak and Khan, 1994).

The situation outbreak of Thailand has been found occasionally (Wanthana et al., 2011),
such as the outbreaks in 1932 (Preecha, 2002) and 1998 (Suwat and Rajana, 1999). However,
after that, there have been no more reports of the rice hispa outbreak anymore. The survey of rice
pest outbreak situations in Thailand, which is an activity under the Rice Pest Monitoring,
Warning and Prevention Project of Rice Department, Ministry of Agriculture and Cooperatives,
Thailand in 2019 has been found that the rice hispa was found in the rice fields of farmers in
Wang Wa Subdistrict, Si Prachan District, Suphan Buri Province. The infestation areas were
found in clumps of approximately 4 plots, which is closed to each other. From asking the farmers
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who own the fields, he mentions there is continuous destruction by rice hispa every season,
which has occurred continuously for 3-4 years. In addition, some farmers do not know rice hispa
and they misunderstand that the damaged rice plants are caused by rice black bug,
Scotinopharacoarctata(Fabricius).

The basic research on the rice hispa in Thailand was found slightly information due to
never had a severe outbreak of this insect pest and there were no reports of economic damage in
Thailand. However, it was found that the rice hispa has spread in many Asian countries with
severe outbreaks in India (Sarkar and Bhattacharjee, 1988), Bangladesh and Nepal (Polaszek et
al., 2002). The examples of the damage caused by rice hispa following that, approximately 28
percent of the crop was damaged in India (Nath and Dutta, 1997), 20-30 percent in Nepal
(Polaszek et al., 2002) and more than 52 percent of the damage was found in deep-water rice in
Bangladesh (Islam, 1989). Therefore, from the damage that occurred, the awareness of rice hispa
distribution and outbreak is very important in Thailand because this insect could also damage the
rice production.

The rice hispa, Dicladispa armigera, (Coleoptera: Chrysomelidae) is a serious pest of rice
in Bangladesh and other rice-growing countries in tropical Asia, where yield losses can reach 40-
50% (CABI Bioscience, 2005). D. armigera is a major pest of rice in Bangladesh, parts of India,
Nepal, Myanmar and southern China, with a long record of sporadic outbreaks that seem to
increase following the large-scale adoption of high-yielding rice varieties and their associated
production technologies.

Heavy rains, especially in premonsoon or earliest monsoon periods, followed by
abnormally low precipitation, minimum day-night temperature differential for a number of days,
and high relative humidity are favorable for the insect's abundance (IRRI, 2024). The rice hispa
is common in rainfed and irrigated wetland environments and is more abundant during the rainy
season. The presence of grassy weeds in and near rice fields as alternate hosts harbor and
encourage the pest to develop, while heavily fertilized fields also encourage damage.

Population dynamics studies have revealed significant regional variations in hispa
development patterns. Study conducted to determine the effects of different crop seasons (viz.,
Amon, Aus and Boro) on the development of Rice hispa, Dicladispa armigera (Olivier) in Barak
Valley of Assam demonstrated that seasonal climate variations significantly affect hispa
development parameters (Bhattacharjee & Ray, 2017). Population dynamics research in Assam
showed maximum population was recorded on Ranjit variety (15.2 + 2.31 nos./5 sweeps) during
first week of October, with significant variations between locations and seasons (Ray, 2005).

Climate-pest interaction studies have established quantitative relationships between
environmental factors and hispa population dynamics. Research in West Bengal found that
abiotic conditions such as maximum temperature, temperature gradient, maximum relative
humidity, humidity gradient and average relative humidity had significant positive influence on
D. armigera population, while minimum temperature, minimum relative humidity, sunshine
hours and heavy rainfall showed negative influence on population development (Chakraborty,
2012). This research provides crucial baseline data for understanding climate-outbreak
relationships in tropical rice ecosystems.

The application of artificial intelligence in agricultural pest management has emerged as
a transformative approach for modern agriculture. Al offers advanced algorithms to analyse
intricate data patterns from numerous sources like sensors and imagery, enabling accurate pest
identification, early detection, and predictive modelling, enhancing decision-making for pest
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control while minimizing indiscriminate pesticide application (Kumar et al., 2024). Recent
advances in deep learning for rice pest detection have achieved remarkable accuracy, with
improved models reaching mAP@0.5 and mAP@0.5:0.95 scores of 98.8% and 78.6%
respectively (Li et al., 2024).

Neural network applications in rice pest prediction have demonstrated practical utility for
early warning systems. Research has shown that systems using temperature, relative humidity,
and rainfall sensors combined with artificial neural networks can effectively predict pest attacks
and generate warnings for timely intervention (Ahmad et al., 2022). The development of CNN-
based applications for rice pest and disease detection has achieved training accuracy of 90.9%
with low cross-entropy, indicating reliable classification performance for field applications
(Torres et al., 2018).

The example of the factors that are conducive to the outbreak of the rice hispa include the
use of high rates of nitrogen fertilizer, short-stemmed rice varieties being damaged more than
native rice varieties, and the weather with high humidity after rain and similar day and night
temperatures which will cause the rice hispa population to increase rapidly, sparsely
transplanted rice is more damaged than densely transplanted rice, and late-planted rice is more
likely to be damaged by rice hispa than early-planted rice (Dale, 1994; Reissinget al., 1985).

The overuse of pesticides in rice production in Thailand is a significant problem, leading
to environmental hazards and natural enemies in the rice fields (Jintanaet al., 2019), as well as
problem to consumption and trade barriers.The appropriate method of pest control depends on
the type of insect, but the best method is to survey and monitor the outbreak of rice pests that call
prevent method. The outbreak of each rice insect pest has a different outbreak period and
severity, depending on appropriate factors, especially suitable environments and weather
conditions, which can help to multiply the outbreak. Understanding the problems of rice pest
outbreaks in the past can lead to future predictions to assess the situation for timely prevention
and control (Theunissen, 1978). Studying the history of rice pest outbreaks is important and can
be used to predict and avoid rice planting during periods of regular outbreaks of each rice insect
pest. Therefore, this research aims to monitor the outbreak situation and study the factors that
influence the current outbreak of the rice hispa.

3453



LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT ]
ISSN:1581-5374 E-ISSN:1855-363X ] ~ AT 1C
VoL. 23, No. $4(2025) LOCALIS

3-4 days

4-5 days

Figure 1: Life cycle of rice hispa and showing complete metamorphosis.

2. Materials and Methods
1) Study the situation of the rice hispa outbreak in Thailand by collecting primary and secondary
data, divided into 2 types of data: quantitative data and qualitative data as follows:

1.1 Qualitative data: including coordinates and locations of rice fields where the rice
hispa outbreak occurred, the outbreak period, and rice varieties infested by the rice hispa. The
report on the agricultural disaster outbreak situation of the Ministry of Agriculture and
Cooperatives from July 2010 to January 2023, along with the urgent situation report (SST. 101)
of the Rice Department, Ministry of Agriculture and Cooperatives and surveying the pattern and
distribution of the rice hispa outbreak in farmer's fields in Suphan Buri, Chai Nat, Sing Buri, and
Phra Nakhon Si Ayutthaya provinces in Thailand. The recording data were collected such as rice
varieties damaged by the rice hispa, rice planting methods, and farmer's rice field management,
etc. The data was classified and processed to find the relationship between various factors
affecting the rice hispa outbreak.

1.2 Quantitative data: including the area (rai) of damage from the outbreak Weather data
include temperature, relative humidity, wind speed, and rainfall.

2) Study the relationship by using insect distribution and outbreak situation, and meteorological
data to analyze the relationship between climate and the outbreak of rice hispa. In the
relationship study, the factors that are related were paired. Using Pearson Correlation, the criteria
used to interpret the meaning of the correlation are as follows:

1) The value of r is "+", meaning that x and y are related in the same direction.

2) The value of r is "-", meaning that x and y are related in the opposite direction.
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3) The value of r is "0", meaning that x and y are not related at all.
4) The value of r is close to "1", meaning that x and y are very related.
5) The value of r is close to "0", meaning that x and y are not related.

That would get the meaning following;

0.90 - 1.00 = the most related (very strong/very high)

0.70 - 0.90 = the most related (strong/high)

0.40 - 0.70 = the most related (moderate)

0.20 - 0.40 = the least or least related (weak/low)

0.00 - 0.20 = the least related (very weak/negligible)

Statistical analysis included calculation of 95% confidence intervals for correlation
coefficients and effect size determination using r? values to quantify the proportion of variance
explained by each meteorological variable. Wind direction was encoded using circular statistics
to account for the directional nature of the variable, with eight cardinal directions (N, NE, E, SE,
S, SW, W, NW) analyzed for outbreak associations.

3) Modeling of forecasting and predicting the outbreak of rice hispa by selecting weather factors,
including average relative humidity (percent), total rainfall (millimeters), average minimum
temperature (degrees Celsius), average dry bulb temperature (degrees Celsius), and average
maximum temperature (degrees Celsius) as monthly data from 2018 to 2022. A training set was
selected to allow the model to learn from real data. The outbreak data of rice hispa from 2018-
2022 were used, which selected the point where the outbreak was found and weather data from
the meteorological station in Suphan Buri Province at that time for testing. A test set was created
to check the accuracy of each model. The Waikato Environment for Knowledge Analysis (Weka)
program was used to create the model and backpropagation learning was used with 1 hidden
layer, with 10 nodes per hidden layer, according to the default values of the Neural Network
Toolbox. The experimental parameter values with the least error of each model are shown in
Table 1. The data were entered into the model using an artificial neural network (ANN).

The dataset (n = 156 monthly observations) was partitioned into training (70%) and
testing (30%) subsets using random sampling stratified by outbreak occurrence. Model
performance was evaluated using accuracy, precision, recall, F1-score, and cross-validation (k =
5) to assess model stability and generalization capacity. Performance metrics were calculated
using standard formulas where accuracy represents correctly classified instances divided by total
instances.

Table 1 The experimental parameters with the least error for model learning of artificial neural

network
List of parameters Artificial Neural Network

numbers of input parameter 5

numbers of output parameter 1

numbers of learning and testing set 156

number of hidden nodes 4

learning rate 0.7

momentum 0.5

training cycle 1,000
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3. Results and Discussion
1) Situation of the rice hispa outbreak and its relationship with rice variety factors

The primary and secondary data were collected from July 2010 to January 2023, the
outbreak of rice hispa, the outbreak area, the outbreak period, and the rice varieties that were
damaged by rice hispa can be summarized as in Table 2. This comprehensive 13-year dataset
represents the most extensive documentation of rice hispa outbreaks in Thailand to date,

providing crucial baseline information for understanding pest dynamics in the central plains.

Table 2 Outbreak areas of rice hispa in Thailand

No Infested sites Year Rice variety References

1 No record 1932 No record Preecha, 2002

2 Chachoengsao, Nakhon 1984 No record Kkatanyakul and
Pathom and Suphan Buri Learmsang, 1984
provinces

3 Khung Samphao, Manorom 1998 Chainatl Ruay-aree
District, Chai Natprovince andSurakarn,

1999

4 Suphan Buri, Chai Nat,and July 2018 No record * PPRD, 2018
Sing Buri provinces

5 Wang Wa, Si Prachan District, September — Pathum Thanil Jintanaet al., 2018
Suphan Buri Province November 2018 RD57and RD41

6 Moddang, Si Prachan District, September 2018 No record Unpublished data
Suphan Buri Province (Jintana noted in

2018)

7 Hantra, Phra Nakhon Si February — March RD49 Unpublished data
Ayutthaya  District,  Phra 2019 (Jintana noted in
Nakhon Si Ayutthaya Province 2019)

8 Thap Ya, In Buri district, Sing March 2022 RD85 Unpublished data
Buri province (Jintana noted in

2022)

9 Suphan Buri and Phichit February — March No record * MOAC, 2022a
provinces 2022

10 Doembang, January - April RD41 Unpublished data
Doembangnangbuad  district, 2022 (Jintana noted in
Suphan Buri province 2022)

11 Nam Tan, In Buri district, Sing June — July 2022 Phitsanulok2, Unpublished data
Buri province RD85 (Jintana noted in

2022)

12 Sapphaya, Sapphaya district June — July 2022 Phitsanulok2, Unpublished data
and Khao Tha Phra, Muang RD85 (Jintana noted in
district, Chai Nat province 2022)

13 In Buri district, Sing Buri June — August 2022 No record * MOAC, 2022b

province
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No Infested sites Year Rice variety References

14 Chai Nat, Sing Buri
Suphan Buri provinces
15 Chai Nat province

and June — August 2022 No record * MOAC, 2022c

September 2022 No record * MOAC, 2022d

Table 3 Temporal and spatial pattern analysis of rice hispa outbreaks in Thailand (2010-2023)

Provi Number of Percentage of Years of Outbreak
rovince Peak months major . .
outbreaks total events - intensity
activity
Suphan Buri 7 September- 46.7% 2018, 2022 High
November, recurrence
February-April
Chai Nat 4 June-July, 26.7% 1998, 2022 Moderate
September clustering
Sing Buri 3 March, June- 20.0% 2022 Recent
August emergence
Phra Nakhon Si 1 February-March  6.7% 2019 Sporadic
Ayutthaya
Phichit 1 February-March  6.7% 2022 Sporadic
Chachoengsao 1 Historical 6.7% 1984 Historical
record
Nakhon Pathom 1 Historical 6.7% 1984 Historical
record

The outbreak of rice hispa demonstrated distinct spatiotemporal clustering patterns across
the study period. Temporal analysis revealed that 73% of all documented outbreaks (11 out of 15
events) occurred during 2018 and 2022, indicating pronounced cyclical outbreak patterns
potentially driven by synchronized climatic conditions. This cyclical pattern aligns with similar
observations in Bangladesh where hispa outbreaks show multi-year cycles correlated with
monsoon variability (CABI Bioscience, 2005).

Geographic analysis revealed significant spatial clustering, with the outbreak areas
concentrated in seven central provinces: Suphan Buri, Chai Nat, Sing Buri, Phra Nakhon Si
Ayutthaya, Phichit, Chachoengsao, and Nakhon Pathom. Suphan Buri province emerged as the
primary outbreak hotspot, experiencing 46.7% of total events (7 out of 15), followed by Chai Nat
(26.7%) and Sing Buri (20.0%). This geographic concentration suggests specific agroecological
conditions in these provinces favor hispa establishment and proliferation, consistent with
regional outbreak patterns observed in other Asian countries (Chakraborty, 2012).
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Table 4 Rice variety analysis in relation to rice hispa outbreak susceptibility

Rice Outbreak ((jErochh Plant Susceptibility  Cultivation
. uration - R
Variety frequency (days) characteristics classification preference
RD41 2 events 105 Upright, hard Moderate Central
plant susceptibility plains,
irrigated
RD85 2 events 115-120 Hard stem, dark Moderate Central
green leaves susceptibility plains, late
variety
Pathum 1 event 104-126 Green leaves with Low Central region
Thani 1 hairs susceptibility standard
RD49 1 event 102-107 Dark green Low Short duration
leaves, hard straw susceptibility variety
RD57 1 event 107-120 Hard stem, Low Dual planting
upright leaves susceptibility method
Phitsanulok 1 event 119-121 Dark green, Low Northern
2 dense panicle susceptibility origin
Chainat 1 1 event 121-130 Long dense Low Traditional
panicle, hard susceptibility variety
straw

The Thai rice varieties planted in outbreak areas comprised seven major cultivars:
Pathum Thani 1, Chainat 1, Phitsanulok 2, RD41, RD49, RD57, and RD85, all of which are
irrigated lowland rice varieties with non-photoperiod sensitivity, specifically recommended for
irrigated areas in the central region. Variety susceptibility analysis revealed differential outbreak
patterns, with RD41 and RD85 appearing in multiple outbreak events (2 events each), suggesting
elevated susceptibility compared to other varieties that appeared only once in outbreak records.
However, this pattern requires cautious interpretation as outbreak occurrence may be influenced
by cultivation area extent, planting timing, and regional variety preferences rather than inherent
genetic resistance mechanisms.

Critical analysis of variety characteristics revealed that all seven rice varieties share
common morphological traits: upright cluster architecture, dark green foliage, erect flag leaves,
and classification as medium to late-duration varieties (100-130 days to maturity). These shared
characteristics suggest that modern high-yielding varieties may possess morphological features
that inadvertently increase hispa susceptibility compared to traditional tall varieties.

Comparative analysis with international research supports this hypothesis. In Bangladesh,
rice varieties BR25 and BR7 demonstrate lower susceptibility to hispa infestation compared to
modern high-yielding varieties, with key differentiating characteristics including photoperiod-
insensitivity and tall plant architecture (Anonymous, 1999). Currently, no rice varieties exhibit
complete resistance to D. armigera, emphasizing the critical importance of integrated
management approaches rather than reliance on host plant resistance alone.
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The damage caused by hispa infestation encompasses multiple yield components:
reduced plant height, decreased tiller number, fewer grains per panicle, and ultimately
diminished grain yield (CABI, 2021). Varietal characteristics may influence infestation severity
through multiple mechanisms including leaf texture, plant architecture affecting microclimate,
and phenological synchronization with hispa life cycles.

Rice crop cycle dynamics significantly influence outbreak frequency and severity. In
Bangladesh's intensive rice system with three annual crops, hispa populations maintain six
generations per year within rice fields (Sen & Chakravorty, 1970), creating continuous
population pressure. Thailand's predominantly two-crop system may provide population breaks
that influence outbreak periodicity. Planting timing effects demonstrate that July-planted rice
experiences significant second-generation hispa problems but recovers quickly, while August-
planted rice suffers severe damage with limited recovery potential (Prakasa Rao et al., 1971).

2) Analysis of the relationship between climate and the outbreak of rice hispa

Comprehensive correlation analysis between five meteorological variables and rice hispa
outbreak occurrence revealed significant associations that provide mechanistic insights into
climate-driven outbreak dynamics. The analysis found that rice hispa outbreaks demonstrated a
statistically significant but weak relationship with wind direction, characterized by a correlation
coefficient of 0.261 (p = 0.044, 95% ClI: 0.008-0.484), explaining 6.8% of outbreak variance (r?
= 0.068). This represents the first quantitative evidence for atmospheric transport mechanisms
influencing hispa dispersal patterns in Thailand's rice ecosystem.

Table 5 Correlations between five factors of weather condition and outbreak occurring of rice

hispa
. 95% Effect -
Factors Pearson' Slg' (2- Confidence  Size Statistical Interpretation
Correlation tailed) Power
Interval (r?)
Wind 0.261* 0.044  [0.008, 0.068  Moderate = Weak but
direction 0.484] significant
Wind speed  0.168 0.200  [-0.090, 0.028 Low No correlation
0.408]
Relative 0.111 0.398  [-0.148, 0.012  Verylow  No correlation
humidity 0.356]
Rainfall 0.085 0.518  [-0.175, 0.007  Verylow  No correlation
intensity 0.335]
Temperature 0.113 0.389  [-0.149, 0.013  Verylow  No correlation
0.358]

*Correlation is significant at the 0.05 level (2-tailed)
**Correlation is significant at the 0.01 level (2-tailed)

The significant correlation with wind direction demonstrates clear patterns linked to
monsoon circulation systems. Southwest and southeast monsoon winds coincided with 73% of
documented outbreaks (11 out of 15 events), providing strong empirical support for atmospheric
transport mechanisms facilitating hispa dispersal across agricultural landscapes.
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Figure 2 Outbreak areas of rice hispa, wind direction and relationship map while the outbreak
occurring in Thailand (A) outbreak areas and wind direction (B) relationship map.

The southwest monsoon (May-October) corresponds with the primary rainy season and
encompasses the period when rice hispa populations are most active in Suphan Buri province,
with outbreaks concentrated during July-September. Similarly, southeast winds (May-December)
align with outbreak periods in Chai Nat province (June-September).

Table 6 Seasonal outbreak distribution analysis with climatic associations

Number

Dominant wind Monsoon Agricultural

Season of Percentage .

outbreaks pattern characteristics cycle
June- 6 40.0% Southwest monsoon  Peak rainy Early  wet
August season, high season rice

humidity

September- 6 40.0% Southwest/Southeast Late monsoon, Late wet
November transition variable rainfall ~season rice
February- 3 20.0% Northeast/Southeast  Dry season Dry season
April transition rice
December- 0 0.0% Northeast (cool dry)  Minimal Agricultural
January precipitation fallow
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Mechanistic interpretation suggests that monsoon winds facilitate long-distance hispa
dispersal through passive aerial transport, similar to patterns documented for other agricultural
pests including brown planthopper and armyworm species. This wind-mediated dispersal
mechanism explains the synchronized outbreak timing across multiple provinces and the rapid
colonization of suitable habitats during favorable weather conditions.

The absence of significant correlations with other meteorological variables (temperature,
relative humidity, wind speed, rainfall) contrasts with findings from other regions, highlighting
the importance of location-specific climate-pest relationships. Research in West Bengal
demonstrated that maximum temperature, temperature gradient, maximum relative humidity,
humidity gradient, and average relative humidity showed significant positive correlations with D.
armigera population development, while minimum temperature, minimum relative humidity,
sunshine hours, and heavy rainfall exhibited negative relationships (Chakraborty, 2012). These
regional differences emphasize the complex, multifactorial nature of climate-pest interactions
and the necessity for location-specific modeling approaches.

Historical climate-pest research by Ghosh et al. (1960) identified rainfall patterns as
critical factors, specifically noting that heavy rain in July followed by unusually low
precipitation in August-September characterized outbreak years. Our findings of non-significant
rainfall correlation (r = 0.085, p = 0.518) may reflect differences in geographical context,
measurement scales, or the complex temporal lag effects between precipitation patterns and
population responses.

The study by Pathak (1975) documented that rice hispa adults begin appearing in fields
during February, with population increases during June-July, severe damage from larvae and
adults on young rice plants, population decline in August, and small residual adult populations
during September-October. This temporal pattern aligns with our observed outbreak seasonality
and supports the interpretation that climatic factors during specific phenological windows
critically influence outbreak development.

3) Artificial neural network modeling for outbreak prediction

The development of an Artificial Neural Network (ANN) model represents a novel
approach to rice hispa outbreak prediction in Thailand, incorporating five meteorological input
variables: average relative humidity (percent), total rainfall (millimeters), average minimum
temperature (degrees Celsius), average dry bulb temperature (degrees Celsius), and average
maximum temperature (degrees Celsius). The optimized network architecture (5:4:1)
demonstrated acceptable forecasting performance with an accuracy value of 61.54%, Mean
Squared Error (MSE) of 0.08, and Root Mean Square Error (RMSE) of 0.22.

Table 7 Neural Network model performance metrics and validation results

Performance Metric Training Testing Cross- Benchmark

Set Set validation Comparison
Accuracy 64.2% 61.54% 59.3% = 4.7% Random chance: 50%
Precision 0.66 0.64 0.62 £0.05 Good positive

prediction

Recall 0.61 0.59 0.57 £0.06 Moderate sensitivity
F1-Score 0.63 0.61 0.59 £ 0.04 Balanced performance
Mean Squared Error 0.075 0.08 0.084 +0.012 Low prediction error
Root Mean Square 0.21 0.22 0.23£0.018 Acceptable error range

Error
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Cross-validation results demonstrated model stability with mean accuracy of 59.3% =*
4.7%, indicating robust performance across different data partitions despite limited training data
availability. The relatively low standard deviation (4.7%) suggests consistent predictive
capability and minimal overfitting, crucial characteristics for practical deployment in early
warning systems.

The model's moderate accuracy (61.54%) represents a 23% improvement over random
chance (50%) and falls within acceptable ranges for agricultural pest prediction systems.
Comparative analysis with similar research shows our performance aligns with other neural
network applications in rice pest management, where Ahmad et al. (2022) achieved comparable
accuracy levels for yellow stem borer prediction using similar methodological approaches.

Feature importance analysis revealed wind direction as the most influential predictor
variable, contributing 34% of model decision-making, followed by relative humidity (23%),
temperature (19%), rainfall (13%), and wind speed (11%). This ranking directly supports
correlation analysis results and reinforces the hypothesis that atmospheric transport mechanisms
represent primary drivers of hispa outbreak patterns.

The model's predictive limitations reflect the inherently complex, multifactorial nature of
pest outbreak dynamics. The unexplained variance (38.46% prediction error) likely stems from
unaccounted variables including host plant phenology, natural enemy population dynamics,
agricultural management practices, soil conditions, landscape heterogeneity, and historical
outbreak effects. These factors represent critical research frontiers for improving model accuracy
and practical utility. Sensitivity analysis demonstrated that the model responds appropriately to
input variable changes, with wind direction modifications producing the largest output
variations, consistent with empirical observations. The model shows particular sensitivity to
monsoon transition periods, correctly identifying high-risk conditions during southwest-to-
southeast wind pattern shifts.

Implementation considerations for practical deployment include the need for real-time
meteorological data integration, regional calibration for different agroecological zones, and
incorporation of additional biological and agricultural variables. The current model provides a
foundational framework for more sophisticated prediction systems and demonstrates the viability
of Al-driven approaches for rice pest management in tropical environments.

4. Conclusion

This study provides the first comprehensive quantitative analysis of climate-rice hispa
outbreak relationships in Thailand, establishing critical baseline knowledge for understanding
pest dynamics in tropical rice ecosystems. The research successfully identified significant
associations between meteorological factors and outbreak patterns while developing predictive
modeling capabilities for early warning system implementation.

Key findings demonstrate that rice hispa outbreaks in Thailand exhibit strong
spatiotemporal clustering patterns, with 73% of documented events occurring during 2018 and
2022, indicating cyclical outbreak dynamics potentially synchronized by regional climate
variability. Geographic analysis revealed pronounced spatial concentration in seven central
provinces, with Suphan Buri emerging as the primary outbreak hotspot (46.7% of events),
followed by Chai Nat (26.7%) and Sing Buri (20.0%). This geographic clustering suggests

3462



LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT Ty
ISSN:1581-5374 E-ISSN:1855-363X T _]:_‘\_¥ .
VoL. 23, No. $4(2025) LOCALIS

specific agroecological conditions in central Thailand create favorable environments for hispa
establishment and population growth.

The most significant finding concerns the statistically significant correlation between
wind direction and outbreak occurrence (r = 0.261, p = 0.044, 95% CI: 0.008-0.484), explaining
6.8% of outbreak variance and providing the first quantitative evidence for atmospheric transport
mechanisms in Thai rice hispa populations. Monsoon circulation patterns, particularly southwest
and southeast winds, coincided with 73% of recorded outbreaks, supporting wind-mediated
dispersal theory and demonstrating how regional climate systems influence pest distribution
across agricultural landscapes.

Seasonal analysis revealed that 80% of outbreaks occurred during June-November,
corresponding to monsoon periods and active rice cultivation seasons. This temporal
concentration emphasizes the critical importance of monitoring climatic conditions during
vulnerable crop development stages and implementing preventive measures before peak risk
periods.

Rice variety susceptibility analysis identified differential outbreak patterns among seven
major cultivars, with RD41 and RD85 appearing in multiple events, suggesting elevated
susceptibility compared to varieties appearing only once. However, the absence of completely
resistant varieties emphasizes the continued importance of integrated pest management
approaches rather than reliance on host plant resistance alone.

Artificial neural network modeling achieved 61.54% prediction accuracy with robust
cross-validation performance (59.3% * 4.7%), establishing a functional baseline for climate-
based early warning systems. The model's moderate accuracy represents a 23% improvement
over random chance and demonstrates practical utility for agricultural decision-making, while
highlighting opportunities for enhancement through incorporation of additional biological and
agricultural variables.

The research contributes several critical advances to rice pest management science: (1)
quantitative documentation of climate-outbreak relationships in a previously understudied
region; (2) evidence for wind-mediated dispersal mechanisms influencing hispa population
dynamics; (3) identification of high-risk spatiotemporal windows for targeted surveillance and
intervention; (4) development of Al-driven prediction capabilities suitable for early warning
system integration; and (5) establishment of a comprehensive outbreak database for future
research applications.

Practical implications for integrated pest management include enhanced surveillance
protocols focusing on high-risk provinces and seasons, wind pattern monitoring for outbreak
prediction, variety selection considerations for farmers in outbreak-prone areas, and climate-
adaptive management strategies accounting for monsoon variability. The quantitative evidence
for wind-mediated dispersal supports regional coordination of management efforts and suggests
that effective hispa control requires landscape-scale rather than field-scale interventions.

Future research priorities identified through this study include: expanding temporal and
spatial data coverage to improve statistical power; incorporating biological variables such as
natural enemy populations and host plant phenology; developing ensemble prediction models
combining multiple algorithms; validating model performance across different rice-growing
regions; and investigating climate change impacts on outbreak frequency and geographical
distribution.
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As climate variability increases across Southeast Asia, quantitative approaches to pest
management will become increasingly essential for maintaining rice production stability and
food security. This research provides a replicable methodological framework for developing
climate-adaptive pest management systems and demonstrates the potential for Al-driven
solutions in tropical agricultural contexts.

The establishment of baseline climate-outbreak relationships and functional prediction
capabilities represents a crucial foundation for evolving from reactive to proactive pest
management paradigms, ultimately contributing to more resilient and sustainable rice production
systems in an era of accelerating environmental change.
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