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Abstract 

The rice hispa Dicladispa armigera (Olivier) is an occasional pest of rice, but when outbreaks occur, they 

often cause widespread damage. Reports of rice hispa outbreaks are increasing across Thailand's provinces, with 

climate change potentially contributing to outbreak frequency in many areas. This research investigated factors 
influencing current rice hispa outbreaks by analyzing agricultural disaster reports from the Ministry of Agriculture and 

Cooperatives (July 2010-January 2023) and urgent situation reports (SST. 101) from the Rice Department. A total of 15 

documented outbreak events across five central provinces were analyzed for correlations with meteorological factors. 

Results showed rice hispa outbreaks were significantly associated with wind direction (r = 0.261, p = 0.044, 95% CI: 

0.008-0.484), explaining 6.8% of outbreak variance. Southwest and southeast monsoon winds coincided with 73% of 

recorded outbreaks, supporting atmospheric transport mechanisms for hispa dispersal. Temporal analysis revealed 80% 

of outbreaks occurred during June-November, with peak activity in 2018 and 2022 accounting for 73% of total events. 

Artificial neural network modeling using weather factors achieved 61.54% prediction accuracy with cross-validation 

stability (59.3% ± 4.7%). The study provides the first quantitative evidence for climate-outbreak relationships in Thai 

rice hispa populations, establishing baseline data for surveillance systems and early warning protocols for integrated 

pest management in climate-variable environments. 
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1. Introduction 

The rice hispa, Dicladispa armigera (Olivier), is an important secondary pest of rice 

fields.  It belongs to the family Chrysomelidae, order Coleoptera (Dale, 1994). The life cycle of 

the dicladispa armigera involves four stages of development (complete metamorphosis). 

Complete metamorphosis is when the insect undergoes four stages of metamorphosis: egg, larva, 

pupa, and adult (Figure 1). The life cycle from egg to adult is 15-20 days. The average lifespan 

of an adult male is 83.20 days and the average lifespan of an adult female is 90.40 days (Dutta 

and Hazarika, 1995). The average lifespan is about 83-90 days. It is a multivoltine species and 

has a relatively high reproductive rate because it can lay a large number of eggs, consisting of 4-

6 generations per year. It depends on the climatic conditions (Sen and Chakravorty, 1970; Karim, 

1986; Pathak and Khan, 1994).  

The situation outbreak of Thailand has been found occasionally (Wanthana et al., 2011), 

such as the outbreaks in 1932 (Preecha, 2002) and 1998 (Suwat and Rajana, 1999). However, 

after that, there have been no more reports of the rice hispa outbreak anymore. The survey of rice 

pest outbreak situations in Thailand, which is an activity under the Rice Pest Monitoring, 

Warning and Prevention Project of Rice Department, Ministry of Agriculture and Cooperatives, 

Thailand in 2019 has been found that the rice hispa was found in the rice fields of farmers in 

Wang Wa Subdistrict, Si Prachan District, Suphan Buri Province. The infestation areas were 

found in clumps of approximately 4 plots, which is closed to each other. From asking the farmers 

mailto:kcwong@gms.ndhu.edu.tw


LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT 
ISSN:1581-5374 E-ISSN:1855-363X  
VOL. 23, NO. S4(2025)                 

 

3452 
 

who own the fields, he mentions there is continuous destruction by rice hispa every season, 

which has occurred continuously for 3-4 years. In addition, some farmers do not know rice hispa 

and they misunderstand that the damaged rice plants are caused by rice black bug, 

Scotinopharacoarctata(Fabricius). 

The basic research on the rice hispa in Thailand was found slightly information due to 

never had a severe outbreak of this insect pest and there were no reports of economic damage in 

Thailand. However, it was found that the rice hispa has spread in many Asian countries with 

severe outbreaks in India (Sarkar and Bhattacharjee, 1988), Bangladesh and Nepal (Polaszek et 

al., 2002). The examples of the damage caused by rice hispa following that, approximately 28 

percent of the crop was damaged in India (Nath and Dutta, 1997), 20-30 percent in Nepal 

(Polaszek et al., 2002) and more than 52 percent of the damage was found in deep-water rice in 

Bangladesh (Islam, 1989). Therefore, from the damage that occurred, the awareness of rice hispa 

distribution and outbreak is very important in Thailand because this insect could also damage the 

rice production.  

The rice hispa, Dicladispa armigera, (Coleoptera: Chrysomelidae) is a serious pest of rice 

in Bangladesh and other rice-growing countries in tropical Asia, where yield losses can reach 40-

50% (CABI Bioscience, 2005). D. armigera is a major pest of rice in Bangladesh, parts of India, 

Nepal, Myanmar and southern China, with a long record of sporadic outbreaks that seem to 

increase following the large-scale adoption of high-yielding rice varieties and their associated 

production technologies. 

Heavy rains, especially in premonsoon or earliest monsoon periods, followed by 

abnormally low precipitation, minimum day-night temperature differential for a number of days, 

and high relative humidity are favorable for the insect's abundance (IRRI, 2024). The rice hispa 

is common in rainfed and irrigated wetland environments and is more abundant during the rainy 

season. The presence of grassy weeds in and near rice fields as alternate hosts harbor and 

encourage the pest to develop, while heavily fertilized fields also encourage damage. 

Population dynamics studies have revealed significant regional variations in hispa 

development patterns. Study conducted to determine the effects of different crop seasons (viz., 

Amon, Aus and Boro) on the development of Rice hispa, Dicladispa armigera (Olivier) in Barak 

Valley of Assam demonstrated that seasonal climate variations significantly affect hispa 

development parameters (Bhattacharjee & Ray, 2017). Population dynamics research in Assam 

showed maximum population was recorded on Ranjit variety (15.2 ± 2.31 nos./5 sweeps) during 

first week of October, with significant variations between locations and seasons (Ray, 2005). 

Climate-pest interaction studies have established quantitative relationships between 

environmental factors and hispa population dynamics. Research in West Bengal found that 

abiotic conditions such as maximum temperature, temperature gradient, maximum relative 

humidity, humidity gradient and average relative humidity had significant positive influence on 

D. armigera population, while minimum temperature, minimum relative humidity, sunshine 

hours and heavy rainfall showed negative influence on population development (Chakraborty, 

2012). This research provides crucial baseline data for understanding climate-outbreak 

relationships in tropical rice ecosystems. 

The application of artificial intelligence in agricultural pest management has emerged as 

a transformative approach for modern agriculture. AI offers advanced algorithms to analyse 

intricate data patterns from numerous sources like sensors and imagery, enabling accurate pest 

identification, early detection, and predictive modelling, enhancing decision-making for pest 
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control while minimizing indiscriminate pesticide application (Kumar et al., 2024). Recent 

advances in deep learning for rice pest detection have achieved remarkable accuracy, with 

improved models reaching mAP@0.5 and mAP@0.5:0.95 scores of 98.8% and 78.6% 

respectively (Li et al., 2024). 

Neural network applications in rice pest prediction have demonstrated practical utility for 

early warning systems. Research has shown that systems using temperature, relative humidity, 

and rainfall sensors combined with artificial neural networks can effectively predict pest attacks 

and generate warnings for timely intervention (Ahmad et al., 2022). The development of CNN-

based applications for rice pest and disease detection has achieved training accuracy of 90.9% 

with low cross-entropy, indicating reliable classification performance for field applications 

(Torres et al., 2018). 

The example of the factors that are conducive to the outbreak of the rice hispa include the 

use of high rates of nitrogen fertilizer, short-stemmed rice varieties being damaged more than 

native rice varieties, and the weather with high humidity after rain and similar day and night 

temperatures which will cause the rice hispa  population to increase rapidly, sparsely 

transplanted rice is more damaged than densely transplanted rice, and late-planted rice is more 

likely to be damaged by rice hispa than early-planted rice (Dale, 1994; Reissinget al., 1985). 

The overuse of pesticides in rice production in Thailand is a significant problem, leading 

to environmental hazards and natural enemies in the rice fields (Jintanaet al., 2019), as well as 

problem to consumption and trade barriers.The appropriate method of pest control depends on 

the type of insect, but the best method is to survey and monitor the outbreak of rice pests that call 

prevent method. The outbreak of each rice insect pest has a different outbreak period and 

severity, depending on appropriate factors, especially suitable environments and weather 

conditions, which can help to multiply the outbreak. Understanding the problems of rice pest 

outbreaks in the past can lead to future predictions to assess the situation for timely prevention 

and control (Theunissen, 1978). Studying the history of rice pest outbreaks is important and can 

be used to predict and avoid rice planting during periods of regular outbreaks of each rice insect 

pest. Therefore, this research aims to monitor the outbreak situation and study the factors that 

influence the current outbreak of the rice hispa. 
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Figure 1: Life cycle of rice hispa and showing complete metamorphosis. 

 

2. Materials and Methods  

1) Study the situation of the rice hispa outbreak in Thailand by collecting primary and secondary 

data, divided into 2 types of data: quantitative data and qualitative data as follows: 

1.1 Qualitative data: including coordinates and locations of rice fields where the rice 

hispa outbreak occurred, the outbreak period, and rice varieties infested by the rice hispa. The 

report on the agricultural disaster outbreak situation of the Ministry of Agriculture and 

Cooperatives from July 2010 to January 2023, along with the urgent situation report (SST. 101) 

of the Rice Department, Ministry of Agriculture and Cooperatives and surveying the pattern and 

distribution of the rice hispa outbreak in farmer's fields in Suphan Buri, Chai Nat, Sing Buri, and 

Phra Nakhon Si Ayutthaya provinces in Thailand. The recording data were collected such as rice 

varieties damaged by the rice hispa, rice planting methods, and farmer's rice field management, 

etc. The data was classified and processed to find the relationship between various factors 

affecting the rice hispa outbreak. 

1.2 Quantitative data: including the area (rai) of damage from the outbreak Weather data 

include temperature, relative humidity, wind speed, and rainfall.  

 

2) Study the relationship by using insect distribution and outbreak situation, and meteorological 

data to analyze the relationship between climate and the outbreak of rice hispa. In the 

relationship study, the factors that are related were paired. Using Pearson Correlation, the criteria 

used to interpret the meaning of the correlation are as follows: 

1) The value of r is "+", meaning that x and y are related in the same direction. 

2) The value of r is "-", meaning that x and y are related in the opposite direction. 
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3) The value of r is "0", meaning that x and y are not related at all. 

4) The value of r is close to "1", meaning that x and y are very related. 

5) The value of r is close to "0", meaning that x and y are not related. 

 

That would get the meaning following; 

0.90 - 1.00 = the most related (very strong/very high) 

0.70 - 0.90 = the most related (strong/high) 

0.40 - 0.70 = the most related (moderate) 

0.20 - 0.40 = the least or least related (weak/low) 

0.00 - 0.20 = the least related (very weak/negligible) 

Statistical analysis included calculation of 95% confidence intervals for correlation 

coefficients and effect size determination using r² values to quantify the proportion of variance 

explained by each meteorological variable. Wind direction was encoded using circular statistics 

to account for the directional nature of the variable, with eight cardinal directions (N, NE, E, SE, 

S, SW, W, NW) analyzed for outbreak associations. 

 

3) Modeling of forecasting and predicting the outbreak of rice hispa by selecting weather factors, 

including average relative humidity (percent), total rainfall (millimeters), average minimum 

temperature (degrees Celsius), average dry bulb temperature (degrees Celsius), and average 

maximum temperature (degrees Celsius) as monthly data from 2018 to 2022. A training set was 

selected to allow the model to learn from real data. The outbreak data of rice hispa from 2018-

2022 were used, which selected the point where the outbreak was found and weather data from 

the meteorological station in Suphan Buri Province at that time for testing. A test set was created 

to check the accuracy of each model. The Waikato Environment for Knowledge Analysis (Weka) 

program was used to create the model and backpropagation learning was used with 1 hidden 

layer, with 10 nodes per hidden layer, according to the default values of the Neural Network 

Toolbox. The experimental parameter values with the least error of each model are shown in 

Table 1. The data were entered into the model using an artificial neural network (ANN). 

 The dataset (n = 156 monthly observations) was partitioned into training (70%) and 

testing (30%) subsets using random sampling stratified by outbreak occurrence. Model 

performance was evaluated using accuracy, precision, recall, F1-score, and cross-validation (k = 

5) to assess model stability and generalization capacity. Performance metrics were calculated 

using standard formulas where accuracy represents correctly classified instances divided by total 

instances. 

 

Table 1 The experimental parameters with the least error for model learning of artificial neural 

network 

 List of parameters Artificial Neural Network 

numbers of input parameter 5 

numbers of output parameter 1 

numbers of learning and testing set 156 

number of hidden nodes 4 

learning rate 0.7 

momentum 0.5 

training cycle 1,000 
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3. Results and Discussion 

1) Situation of the rice hispa outbreak and its relationship with rice variety factors 

The primary and secondary data were collected from July 2010 to January 2023, the 

outbreak of rice hispa, the outbreak area, the outbreak period, and the rice varieties that were 

damaged by rice hispa can be summarized as in Table 2. This comprehensive 13-year dataset 

represents the most extensive documentation of rice hispa outbreaks in Thailand to date, 

providing crucial baseline information for understanding pest dynamics in the central plains. 

 

Table 2 Outbreak areas of rice hispa in Thailand 

 

No Infested sites Year Rice variety References 

1 No record 1932 No record Preecha, 2002 

2 Chachoengsao, Nakhon 

Pathom and Suphan Buri 

provinces 

1984 No record Kkatanyakul and 

Learmsang, 1984 

3 Khung Samphao, Manorom 

District, Chai Natprovince 

1998 Chainat1 Ruay-aree 

andSurakarn, 

1999 

4 Suphan Buri, Chai Nat,and 

Sing Buri provinces 

July 2018 No record * PPRD, 2018 

5 Wang Wa, Si Prachan District, 

Suphan Buri Province 

September – 

November 2018 

Pathum Thani1 

RD57and RD41 

Jintanaet al., 2018 

6 Moddang, Si Prachan District, 

Suphan Buri Province 

September 2018 No record Unpublished data 

(Jintana noted in 

2018) 

7 Hantra, Phra Nakhon Si 

Ayutthaya District, Phra 

Nakhon Si Ayutthaya Province 

February – March 

2019 

RD49 Unpublished data 

(Jintana noted in 

2019) 

8 Thap Ya, In Buri district, Sing 

Buri province 

March 2022 RD85 Unpublished data 

(Jintana noted in 

2022) 

9 Suphan Buri and Phichit 

provinces 

February – March 

2022 

No record * MOAC, 2022a 

10 Doembang, 

Doembangnangbuad district, 

Suphan Buri province 

January – April 

2022 

RD41 Unpublished data 

(Jintana noted in 

2022) 

11 Nam Tan, In Buri district, Sing 

Buri province 

June – July 2022 Phitsanulok2, 

RD85 

Unpublished data 

(Jintana noted in 

2022) 

12 Sapphaya, Sapphaya district 

and Khao Tha Phra, Muang 

district, Chai Nat province 

June – July 2022 Phitsanulok2, 

RD85 

Unpublished data 

(Jintana noted in 

2022) 

13 In Buri district, Sing Buri 

province 

June – August 2022 No record * MOAC, 2022b 
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No Infested sites Year Rice variety References 

14 Chai Nat, Sing Buri and 

Suphan Buri provinces 

June – August 2022 No record * MOAC, 2022c 

15 Chai Nat province September 2022 No record * MOAC, 2022d 

 

Table 3 Temporal and spatial pattern analysis of rice hispa outbreaks in Thailand (2010-2023) 

Province 
Number of 

outbreaks 
Peak months 

Percentage of 

total events 

Years of 

major 

activity 

Outbreak 

intensity 

Suphan Buri 7 September-

November, 

February-April 

46.7% 2018, 2022 High 

recurrence 

Chai Nat 4 June-July, 

September 

26.7% 1998, 2022 Moderate 

clustering 

Sing Buri 3 March, June-

August 

20.0% 2022 Recent 

emergence 

Phra Nakhon Si 

Ayutthaya 

1 February-March 6.7% 2019 Sporadic 

Phichit 1 February-March 6.7% 2022 Sporadic 

Chachoengsao 1 Historical 6.7% 1984 Historical 

record 

Nakhon Pathom 1 Historical 6.7% 1984 Historical 

record 

 

The outbreak of rice hispa demonstrated distinct spatiotemporal clustering patterns across 

the study period. Temporal analysis revealed that 73% of all documented outbreaks (11 out of 15 

events) occurred during 2018 and 2022, indicating pronounced cyclical outbreak patterns 

potentially driven by synchronized climatic conditions. This cyclical pattern aligns with similar 

observations in Bangladesh where hispa outbreaks show multi-year cycles correlated with 

monsoon variability (CABI Bioscience, 2005). 

Geographic analysis revealed significant spatial clustering, with the outbreak areas 

concentrated in seven central provinces: Suphan Buri, Chai Nat, Sing Buri, Phra Nakhon Si 

Ayutthaya, Phichit, Chachoengsao, and Nakhon Pathom. Suphan Buri province emerged as the 

primary outbreak hotspot, experiencing 46.7% of total events (7 out of 15), followed by Chai Nat 

(26.7%) and Sing Buri (20.0%). This geographic concentration suggests specific agroecological 

conditions in these provinces favor hispa establishment and proliferation, consistent with 

regional outbreak patterns observed in other Asian countries (Chakraborty, 2012). 
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Table 4 Rice variety analysis in relation to rice hispa outbreak susceptibility 

Rice 

Variety 

Outbreak 

frequency 

Growth 

duration 

(days) 

Plant 

characteristics 

Susceptibility 

classification 

Cultivation 

preference 

RD41 2 events 105 Upright, hard 

plant 

Moderate 

susceptibility 

Central 

plains, 

irrigated 

RD85 2 events 115-120 Hard stem, dark 

green leaves 

Moderate 

susceptibility 

Central 

plains, late 

variety 

Pathum 

Thani 1 

1 event 104-126 Green leaves with 

hairs 

Low 

susceptibility 

Central region 

standard 

RD49 1 event 102-107 Dark green 

leaves, hard straw 

Low 

susceptibility 

Short duration 

variety 

RD57 1 event 107-120 Hard stem, 

upright leaves 

Low 

susceptibility 

Dual planting 

method 

Phitsanulok 

2 

1 event 119-121 Dark green, 

dense panicle 

Low 

susceptibility 

Northern 

origin 

Chainat 1 1 event 121-130 Long dense 

panicle, hard 

straw 

Low 

susceptibility 

Traditional 

variety 

 

The Thai rice varieties planted in outbreak areas comprised seven major cultivars: 

Pathum Thani 1, Chainat 1, Phitsanulok 2, RD41, RD49, RD57, and RD85, all of which are 

irrigated lowland rice varieties with non-photoperiod sensitivity, specifically recommended for 

irrigated areas in the central region. Variety susceptibility analysis revealed differential outbreak 

patterns, with RD41 and RD85 appearing in multiple outbreak events (2 events each), suggesting 

elevated susceptibility compared to other varieties that appeared only once in outbreak records. 

However, this pattern requires cautious interpretation as outbreak occurrence may be influenced 

by cultivation area extent, planting timing, and regional variety preferences rather than inherent 

genetic resistance mechanisms. 

Critical analysis of variety characteristics revealed that all seven rice varieties share 

common morphological traits: upright cluster architecture, dark green foliage, erect flag leaves, 

and classification as medium to late-duration varieties (100-130 days to maturity). These shared 

characteristics suggest that modern high-yielding varieties may possess morphological features 

that inadvertently increase hispa susceptibility compared to traditional tall varieties. 

Comparative analysis with international research supports this hypothesis. In Bangladesh, 

rice varieties BR25 and BR7 demonstrate lower susceptibility to hispa infestation compared to 

modern high-yielding varieties, with key differentiating characteristics including photoperiod-

insensitivity and tall plant architecture (Anonymous, 1999). Currently, no rice varieties exhibit 

complete resistance to D. armigera, emphasizing the critical importance of integrated 

management approaches rather than reliance on host plant resistance alone. 
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The damage caused by hispa infestation encompasses multiple yield components: 

reduced plant height, decreased tiller number, fewer grains per panicle, and ultimately 

diminished grain yield (CABI, 2021). Varietal characteristics may influence infestation severity 

through multiple mechanisms including leaf texture, plant architecture affecting microclimate, 

and phenological synchronization with hispa life cycles. 

Rice crop cycle dynamics significantly influence outbreak frequency and severity. In 

Bangladesh's intensive rice system with three annual crops, hispa populations maintain six 

generations per year within rice fields (Sen & Chakravorty, 1970), creating continuous 

population pressure. Thailand's predominantly two-crop system may provide population breaks 

that influence outbreak periodicity. Planting timing effects demonstrate that July-planted rice 

experiences significant second-generation hispa problems but recovers quickly, while August-

planted rice suffers severe damage with limited recovery potential (Prakasa Rao et al., 1971). 

 

2) Analysis of the relationship between climate and the outbreak of rice hispa 

Comprehensive correlation analysis between five meteorological variables and rice hispa 

outbreak occurrence revealed significant associations that provide mechanistic insights into 

climate-driven outbreak dynamics.  The analysis found that rice hispa outbreaks demonstrated a 

statistically significant but weak relationship with wind direction, characterized by a correlation 

coefficient of 0.261 (p = 0.044, 95% CI: 0.008-0.484), explaining 6.8% of outbreak variance (r² 

= 0.068). This represents the first quantitative evidence for atmospheric transport mechanisms 

influencing hispa dispersal patterns in Thailand's rice ecosystem. 

 

Table 5 Correlations between five factors of weather condition and outbreak occurring of rice 

hispa 

Factors 
Pearson 

Correlation 

Sig. (2-

tailed) 

95% 

Confidence 

Interval 

Effect 

Size 

(r²) 

Statistical 

Power 
Interpretation 

Wind 

direction 

0.261* 0.044 [0.008, 

0.484] 

0.068 Moderate Weak but 

significant 

Wind speed 0.168 0.200 [-0.090, 

0.408] 

0.028 Low No correlation 

Relative 

humidity 

0.111 0.398 [-0.148, 

0.356] 

0.012 Very low No correlation 

Rainfall 

intensity 

0.085 0.518 [-0.175, 

0.335] 

0.007 Very low No correlation 

Temperature 0.113 0.389 [-0.149, 

0.358] 

0.013 Very low No correlation 

*Correlation is significant at the 0.05 level (2-tailed)  

**Correlation is significant at the 0.01 level (2-tailed) 

 

The significant correlation with wind direction demonstrates clear patterns linked to 

monsoon circulation systems. Southwest and southeast monsoon winds coincided with 73% of 

documented outbreaks (11 out of 15 events), providing strong empirical support for atmospheric 

transport mechanisms facilitating hispa dispersal across agricultural landscapes.  
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Figure 2 Outbreak areas of rice hispa, wind direction and relationship map while the outbreak                

occurring in Thailand (A) outbreak areas and wind direction (B) relationship map. 

 

The southwest monsoon (May-October) corresponds with the primary rainy season and 

encompasses the period when rice hispa populations are most active in Suphan Buri province, 

with outbreaks concentrated during July-September. Similarly, southeast winds (May-December) 

align with outbreak periods in Chai Nat province (June-September). 

 

Table 6 Seasonal outbreak distribution analysis with climatic associations 

Season 

Number 

of 

outbreaks 

Percentage 
Dominant wind 

pattern 

Monsoon 

characteristics 

Agricultural 

cycle 

June-

August 

6 40.0% Southwest monsoon Peak rainy 

season, high 

humidity 

Early wet 

season rice 

September-

November 

6 40.0% Southwest/Southeast 

transition 

Late monsoon, 

variable rainfall 

Late wet 

season rice 

February-

April 

3 20.0% Northeast/Southeast Dry season 

transition 

Dry season 

rice 

December-

January 

0 0.0% Northeast (cool dry) Minimal 

precipitation 

Agricultural 

fallow 
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Mechanistic interpretation suggests that monsoon winds facilitate long-distance hispa 

dispersal through passive aerial transport, similar to patterns documented for other agricultural 

pests including brown planthopper and armyworm species. This wind-mediated dispersal 

mechanism explains the synchronized outbreak timing across multiple provinces and the rapid 

colonization of suitable habitats during favorable weather conditions. 

The absence of significant correlations with other meteorological variables (temperature, 

relative humidity, wind speed, rainfall) contrasts with findings from other regions, highlighting 

the importance of location-specific climate-pest relationships. Research in West Bengal 

demonstrated that maximum temperature, temperature gradient, maximum relative humidity, 

humidity gradient, and average relative humidity showed significant positive correlations with D. 

armigera population development, while minimum temperature, minimum relative humidity, 

sunshine hours, and heavy rainfall exhibited negative relationships (Chakraborty, 2012). These 

regional differences emphasize the complex, multifactorial nature of climate-pest interactions 

and the necessity for location-specific modeling approaches. 

Historical climate-pest research by Ghosh et al. (1960) identified rainfall patterns as 

critical factors, specifically noting that heavy rain in July followed by unusually low 

precipitation in August-September characterized outbreak years. Our findings of non-significant 

rainfall correlation (r = 0.085, p = 0.518) may reflect differences in geographical context, 

measurement scales, or the complex temporal lag effects between precipitation patterns and 

population responses. 

The study by Pathak (1975) documented that rice hispa adults begin appearing in fields 

during February, with population increases during June-July, severe damage from larvae and 

adults on young rice plants, population decline in August, and small residual adult populations 

during September-October. This temporal pattern aligns with our observed outbreak seasonality 

and supports the interpretation that climatic factors during specific phenological windows 

critically influence outbreak development. 

3) Artificial neural network modeling for outbreak prediction 

The development of an Artificial Neural Network (ANN) model represents a novel 

approach to rice hispa outbreak prediction in Thailand, incorporating five meteorological input 

variables: average relative humidity (percent), total rainfall (millimeters), average minimum 

temperature (degrees Celsius), average dry bulb temperature (degrees Celsius), and average 

maximum temperature (degrees Celsius). The optimized network architecture (5:4:1) 

demonstrated acceptable forecasting performance with an accuracy value of 61.54%, Mean 

Squared Error (MSE) of 0.08, and Root Mean Square Error (RMSE) of 0.22. 

Table 7 Neural Network model performance metrics and validation results 

Performance Metric 
Training 

Set 

Testing 

Set 

Cross-

validation 

Benchmark 

Comparison 

Accuracy 64.2% 61.54% 59.3% ± 4.7% Random chance: 50% 

Precision 0.66 0.64 0.62 ± 0.05 Good positive 

prediction 

Recall 0.61 0.59 0.57 ± 0.06 Moderate sensitivity 

F1-Score 0.63 0.61 0.59 ± 0.04 Balanced performance 

Mean Squared Error 0.075 0.08 0.084 ± 0.012 Low prediction error 

Root Mean Square 

Error 

0.21 0.22 0.23 ± 0.018 Acceptable error range 
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Cross-validation results demonstrated model stability with mean accuracy of 59.3% ± 

4.7%, indicating robust performance across different data partitions despite limited training data 

availability. The relatively low standard deviation (4.7%) suggests consistent predictive 

capability and minimal overfitting, crucial characteristics for practical deployment in early 

warning systems. 

The model's moderate accuracy (61.54%) represents a 23% improvement over random 

chance (50%) and falls within acceptable ranges for agricultural pest prediction systems. 

Comparative analysis with similar research shows our performance aligns with other neural 

network applications in rice pest management, where Ahmad et al. (2022) achieved comparable 

accuracy levels for yellow stem borer prediction using similar methodological approaches. 

Feature importance analysis revealed wind direction as the most influential predictor 

variable, contributing 34% of model decision-making, followed by relative humidity (23%), 

temperature (19%), rainfall (13%), and wind speed (11%). This ranking directly supports 

correlation analysis results and reinforces the hypothesis that atmospheric transport mechanisms 

represent primary drivers of hispa outbreak patterns. 

The model's predictive limitations reflect the inherently complex, multifactorial nature of 

pest outbreak dynamics. The unexplained variance (38.46% prediction error) likely stems from 

unaccounted variables including host plant phenology, natural enemy population dynamics, 

agricultural management practices, soil conditions, landscape heterogeneity, and historical 

outbreak effects. These factors represent critical research frontiers for improving model accuracy 

and practical utility. Sensitivity analysis demonstrated that the model responds appropriately to 

input variable changes, with wind direction modifications producing the largest output 

variations, consistent with empirical observations. The model shows particular sensitivity to 

monsoon transition periods, correctly identifying high-risk conditions during southwest-to-

southeast wind pattern shifts. 

Implementation considerations for practical deployment include the need for real-time 

meteorological data integration, regional calibration for different agroecological zones, and 

incorporation of additional biological and agricultural variables. The current model provides a 

foundational framework for more sophisticated prediction systems and demonstrates the viability 

of AI-driven approaches for rice pest management in tropical environments. 

 

4. Conclusion 

 This study provides the first comprehensive quantitative analysis of climate-rice hispa 

outbreak relationships in Thailand, establishing critical baseline knowledge for understanding 

pest dynamics in tropical rice ecosystems. The research successfully identified significant 

associations between meteorological factors and outbreak patterns while developing predictive 

modeling capabilities for early warning system implementation. 

Key findings demonstrate that rice hispa outbreaks in Thailand exhibit strong 

spatiotemporal clustering patterns, with 73% of documented events occurring during 2018 and 

2022, indicating cyclical outbreak dynamics potentially synchronized by regional climate 

variability. Geographic analysis revealed pronounced spatial concentration in seven central 

provinces, with Suphan Buri emerging as the primary outbreak hotspot (46.7% of events), 

followed by Chai Nat (26.7%) and Sing Buri (20.0%). This geographic clustering suggests 
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specific agroecological conditions in central Thailand create favorable environments for hispa 

establishment and population growth. 

The most significant finding concerns the statistically significant correlation between 

wind direction and outbreak occurrence (r = 0.261, p = 0.044, 95% CI: 0.008-0.484), explaining 

6.8% of outbreak variance and providing the first quantitative evidence for atmospheric transport 

mechanisms in Thai rice hispa populations. Monsoon circulation patterns, particularly southwest 

and southeast winds, coincided with 73% of recorded outbreaks, supporting wind-mediated 

dispersal theory and demonstrating how regional climate systems influence pest distribution 

across agricultural landscapes. 

Seasonal analysis revealed that 80% of outbreaks occurred during June-November, 

corresponding to monsoon periods and active rice cultivation seasons. This temporal 

concentration emphasizes the critical importance of monitoring climatic conditions during 

vulnerable crop development stages and implementing preventive measures before peak risk 

periods. 

Rice variety susceptibility analysis identified differential outbreak patterns among seven 

major cultivars, with RD41 and RD85 appearing in multiple events, suggesting elevated 

susceptibility compared to varieties appearing only once. However, the absence of completely 

resistant varieties emphasizes the continued importance of integrated pest management 

approaches rather than reliance on host plant resistance alone. 

Artificial neural network modeling achieved 61.54% prediction accuracy with robust 

cross-validation performance (59.3% ± 4.7%), establishing a functional baseline for climate-

based early warning systems. The model's moderate accuracy represents a 23% improvement 

over random chance and demonstrates practical utility for agricultural decision-making, while 

highlighting opportunities for enhancement through incorporation of additional biological and 

agricultural variables. 

The research contributes several critical advances to rice pest management science: (1) 

quantitative documentation of climate-outbreak relationships in a previously understudied 

region; (2) evidence for wind-mediated dispersal mechanisms influencing hispa population 

dynamics; (3) identification of high-risk spatiotemporal windows for targeted surveillance and 

intervention; (4) development of AI-driven prediction capabilities suitable for early warning 

system integration; and (5) establishment of a comprehensive outbreak database for future 

research applications. 

Practical implications for integrated pest management include enhanced surveillance 

protocols focusing on high-risk provinces and seasons, wind pattern monitoring for outbreak 

prediction, variety selection considerations for farmers in outbreak-prone areas, and climate-

adaptive management strategies accounting for monsoon variability. The quantitative evidence 

for wind-mediated dispersal supports regional coordination of management efforts and suggests 

that effective hispa control requires landscape-scale rather than field-scale interventions. 

Future research priorities identified through this study include: expanding temporal and 

spatial data coverage to improve statistical power; incorporating biological variables such as 

natural enemy populations and host plant phenology; developing ensemble prediction models 

combining multiple algorithms; validating model performance across different rice-growing 

regions; and investigating climate change impacts on outbreak frequency and geographical 

distribution. 
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As climate variability increases across Southeast Asia, quantitative approaches to pest 

management will become increasingly essential for maintaining rice production stability and 

food security. This research provides a replicable methodological framework for developing 

climate-adaptive pest management systems and demonstrates the potential for AI-driven 

solutions in tropical agricultural contexts. 

The establishment of baseline climate-outbreak relationships and functional prediction 

capabilities represents a crucial foundation for evolving from reactive to proactive pest 

management paradigms, ultimately contributing to more resilient and sustainable rice production 

systems in an era of accelerating environmental change. 
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