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Abstract  

This research presents a detailed performance analysis of a Cognitive Radio Network (CRN) employing energy 

detection-based spectrum sensing under realistic wireless channel conditions. The system model comprises a 

primary user (PU), a secondary user transmitter (SU-Tx), and a secondary user receiver (SU-Rx), where the SU-

Tx senses the PU’s channel using energy detection and transmits to the SU-Rx if the channel is found idle. The 

communication links are affected by Rayleigh fading and distance-dependent path loss, providing a practical 

representation of wireless propagation. The total time frame is divided into sensing and transmission phases, and 

key performance metrics including detection probability, false alarm probability, missed detection probability, and 

average throughput are analytically derived using Gaussian approximation under the central limit theorem. The 

detection probability is modeled as a function of the sensing threshold, sample size, noise power, and received 

signal-to-noise ratio (SNR). To overcome the limitations of static threshold settings, the study integrates machine 

learning techniques to dynamically optimize system parameters. Reinforcement learning method is used for 

predicting optimal sensing thresholds and to adaptively select transmission power and sensing duration to 

maximize throughput. Simulation results demonstrate that adaptive threshold selection using RL significantly 

improves detection accuracy and throughput compared to fixed threshold methods. The study also shows how 

learning-based approaches reduce missed detections and false alarms, making the system more reliable and 

efficient in dynamic spectral environments. These findings support the development of intelligent and robust 

CRNs. 
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Introduction   

The rapid proliferation of wireless devices and the explosive demand for spectrum resources 

have led to an increasing strain on the available radio frequency (RF) spectrum. Traditional 

static spectrum allocation policies have proven to be inefficient, with studies indicating that 

significant portions of the licensed spectrum remain underutilized both spatially and 

temporally [1]. This inefficiency has catalyzed the development of Cognitive Radio Networks 

(CRNs), an emerging paradigm that enables dynamic spectrum access (DSA) by allowing 

unlicensed or secondary users (SUs) to opportunistically utilize spectrum bands without 

causing harmful interference to licensed or primary users (PUs) [2]. Cognitive radio (CR) 

represents an intelligent wireless communication system that is aware of its environment and 

can dynamically adapt its transmission parameters [3]. The core functionalities of a CR 

include spectrum sensing, spectrum decision, spectrum sharing, and spectrum mobility [4]. 

Among these, spectrum sensing is the foundational step that enables the detection of vacant 

frequency bands, often referred to as spectrum holes or white spaces [5]. Reliable spectrum 

sensing ensures that SUs can access unused spectrum without disrupting PU communication 

[6]. One of the most widely adopted techniques for spectrum sensing is energy detection due 

to its simplicity and lack of requirement for prior knowledge of the PU's signal characteristics 

[7]. In energy detection, the SU measures the energy of the received signal over a time 

window and compares it with a predefined threshold to decide on the presence or absence of 

the PU [8]. However, the performance of energy detection is highly influenced by channel 

conditions, noise uncertainty, and signal-to-noise ratio (SNR). Moreover, energy detection 

suffers from the trade-off between detection probability and false alarm probability, which 

directly affects the throughput and efficiency of CRNs [9]. To analyze the performance of 

energy detection, mathematical models that incorporate Rayleigh fading, path loss, and 

additive white Gaussian noise (AWGN) are commonly employed [10]. Rayleigh fading 

models the multipath propagation in wireless channels, which significantly impacts the 

received signal amplitude, especially in urban and indoor environments [11]. Path loss 

accounts for the attenuation of the signal as a function of distance between the transmitter and 

receiver, and it is typically modeled as an inverse power-law function characterized by a path 

loss exponent. These factors are critical in determining the received SNR, which in turn 

influences the reliability of spectrum sensing and communication. 

This research focuses on a simplified but practically significant scenario involving one 

primary user (PU), one secondary user transmitter (SU-Tx), and one secondary user receiver 

(SU-Rx). The SU-Tx is responsible for sensing the PU’s channel to determine its occupancy 

status. If the channel is sensed to be idle, SU-Tx transmits data to SU-Rx. The communication 

links between PU → SU-Tx and SU-Tx → SU-Rx are assumed to undergo flat Rayleigh 

fading and distance-dependent path loss, which introduces stochastic variability in the received 

signal power. The entire frame duration is divided into two parts: a sensing phase and a 

transmission phase, ensuring that spectrum sensing is performed prior to any data 

transmission. 

In this system, the key performance metrics include:  

Detection Probability (𝑃𝐷): The probability that the SU correctly detects the presence of the 

PU.  

False Alarm Probability (𝑃𝐹𝐴): The probability that the SU incorrectly declares the PU to be 

present when it is actually absent.  
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Missed Detection Probability (𝑃𝑀): The probability of failing to detect an active PU, which 

could result in interference. 

Average Throughput (𝑅𝐴𝑣𝑔): The expected data rate at SU-Rx, accounting for sensing time and 

detection outcomes. 

The performance of the system is modeled analytically using probabilistic expressions derived 

under the Gaussian approximation of the test statistic used in energy detection [12]. The 

derivations are based on the central limit theorem and include expressions for the test 

statistic’s distribution under both hypotheses. These expressions are used to calculate the 

detection and false alarm probabilities as functions of the sensing threshold, noise power, 

sample size, and received SNR [13].  

To enhance system performance and address practical limitations of static thresholding, this 

study also integrates machine learning (ML) techniques [14]. ML algorithms offer powerful 

tools for optimizing system parameters in real-time, especially in dynamic environments 

where channel conditions and PU activity vary unpredictably [15]. For instance: Supervised 

learning models such as support vector machines (SVM) and random forest regressors can be 

trained to predict optimal sensing thresholds based on real-time features like received SNR 

and number of samples [16]. Reinforcement learning (RL) techniques, such as Q-learning, can 

be used to maximize long-term throughput by learning optimal transmission power and 

sensing time allocation strategies through interaction with the environment [17]. Unsupervised 

learning models can help identify patterns in PU activity, enabling proactive spectrum access 

scheduling by the SU. 

By combining classical signal processing techniques with modern machine learning 

approaches, this work contributes to the ongoing development of intelligent and adaptive 

cognitive radio systems capable of operating efficiently in complex and uncertain spectrum 

environments. 

 Developed an analytical model for energy detection in CRNs under Rayleigh fading and 

path loss. 

 Derived closed-form expressions for detection probability, false alarm rate, and throughput 

using Gaussian approximation. 

 Integrated machine learning techniques to optimize sensing thresholds, transmission 

power, and sensing duration. 

 Demonstrated through simulations that reinforcement learning significantly improves 

detection accuracy and system throughput 

2. System Model: 

 

 
 

Fig. 1: System Model 
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A system model of cognitive radio network (CRN) consisting of a Primary User (PU), a 

Secondary User Transmitter (SU-Tx), and a Secondary User Receiver (SU-Rx) is 

presented in the Fig. 1. The primary user is the licensed user that holds spectrum right. In this 

model, the PU is assumed to be a base station transmitting in a specific spectrum band. 

Secondary User Transmitter (SU-Tx) attempts to opportunistically access the spectrum 

when it is not being used by the PU and it is responsible for sensing the PU’s channel and 

transmitting to the SU-Rx. The SU-Tx uses energy detection to sense the availability of the PU 

channel before transmitting data to the SU-Rx. The communication between the nodes is 

subject to Rayleigh fading and distance-dependent path loss. In the Sensing Phase, the SU-Tx 

senses the PU channel to determine if the PU is busy or idle. The duration of sensing is 

denoted as 𝜏. If it found that the PU is idle during the sensing phase then the SU-Tx uses the 

remaining time (𝑇 − 𝜏) to transmit data to the SU-Rx. Each communication link in the system 

undergoes Rayleigh fading and path loss. The fading coefficients for each link are modeled 

as independent complex Gaussian random variables, representing the impact of multipath 

fading. The fading channel coefficient between the PU and the SU-Tx is represented by 

ℎ𝑃𝑇 ~ 𝒞𝒩(0, 1) and between the SU-Tx and the SU-Rx is represented by ℎ𝑆𝑅  ~ 𝒞𝒩(0, 1). 

The distance between the PU and the SU-Tx is denoted by 𝑑𝑃𝑇. The distance between the SU-

Tx and the SU-Rx 𝑑𝑆𝑅. The signal power decays with distance are determined by ∝. The noise 

power at both the SU-Tx and SU-Rx is denoted by 𝜎𝑛
2.   

Under ℋ0 hypothesis the received signal at SU-Tx during Sensing is given by, 

     𝑟(𝑡) = 𝑛(𝑡)       (1) 

 

where𝑛(𝑡) is the noise at SU-Tx. Under ℋ1 hypothesis the received signal at SU-Tx during 

Sensing is given by, 

𝑟(𝑡) = ℎ𝑃𝑇𝑠𝑃𝑈(𝑡) + 𝑛(𝑡)                      (2) 

 

where 𝑠𝑃𝑈(𝑡) is the signal transmitted by the PU. The received signal at SU-Rx during 

transmission is given by, 

𝑦(𝑡) = ℎ𝑆𝑅𝑠𝑆𝑈(𝑡) + 𝑛(𝑡)  (3) 

 

where𝑠𝑆𝑈(𝑡)is the signal transmitted by the SU-Tx. The received Power at SU-Tx from PU is 

given by, 

𝑃𝑟
𝑃𝑇 = 𝑃𝑃𝑈|ℎ𝑃𝑇|2𝑑𝑃𝑇

−∝  (4) 

where 𝑃𝑃𝑈 is the power transmitted by the PU and 𝑑𝑃𝑇 is the distance between PU and SU-Tx. 

The SNR of PU signal at SU-Tx during Sensing  

𝛾𝑃𝑇 =
𝑃𝑃𝑈|ℎ𝑃𝑇|2

𝜎𝑛
2𝑑𝑃𝑇

∝   (5) 

Received Power at SU-Rx from SU-Tx 

     𝑃𝑟
𝑆𝑅 = 𝑃𝑆𝑈|ℎ𝑆𝑅|2𝑑𝑆𝑅

−∝  (6) 

 

where𝑃𝑆𝑈 is the power transmitted by the SU-Tx and 𝑑𝑆𝑅 is the distance between SU-Tx and 

SU-Rx. The SNR at SU-Rx during Transmission can be written as follows,  

𝛾𝑆𝑅 =
𝑃𝑆𝑈|ℎ𝑆𝑅|2

𝜎𝑛
2𝑑𝑆𝑅

∝  (7) 
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The detection probability 𝑃𝐷 of the SU-Tx, which is based on energy detection, is derived as 

follows. The SU-Tx uses an energy detection scheme to sense the PU channel. The received 

signal during the sensing phase follows one of two hypotheses: 

ℋ0:PU is absent (only noise is received). 

ℋ1:PU is present (signal + noise is received). 

 

The energy detection statistic 𝑌is given by, 

𝑌 =
1

𝑁
∑ |𝑟(𝑖)|2𝑁

𝑖=1   (8) 

where 𝑁 is the number of sensing samples. The detection probability 𝑃𝐷 is the probability that 

the decision rule correctly detects the presence of the PU when ℋ1 is true. Using the Central 

Limit Theorem, Y is approximated as Gaussian.  

𝑌 ~ 𝒩 (𝜇0 = 𝜎𝑛
2,     𝜎0

2 =
1

𝑁
𝜎𝑛

4)For ℋ0   (9) 

The received signal power includes PU signal can be formulated as follows, 

𝑌 ~ 𝒩 (𝜇1 = 𝜎𝑛
2(1 + 𝛾𝑃𝑇),   𝜎1

2 =
1

𝑁
[𝜎𝑛

2(1 + 𝛾𝑃𝑇)]2)For ℋ1   (10) 

Detection probability can be defined as given below, 

𝑃𝐷 = P (𝑌 > 𝜆 | ℋ1)   (11) 

Using the Gaussian distribution under ℋ1,  

𝑃𝐷 = 𝑄 (
𝜆− 𝜇1

𝜎1
)   (12) 

where, 𝑄(𝑥) =
1

√2𝜋
∫ 𝑒−𝑡2

2⁄∞

𝑥
 𝑑𝑡. 

For a given sensing threshold 𝜆, the detection probability can be simplified as follows, 

𝑃𝐷 = 𝑄 (√𝑁 (
𝜆

𝜎𝑛
2⁄

1+𝛾𝑃𝑇
− 1))    (13) 

The throughput of the system is defined as the amount of data successfully transmitted from 

the SU-Tx to the SU-Rx during the transmission phase. The total time 𝑇 is divided into two 

phases: sensing and transmission. The average throughput 𝑅𝐴𝑣𝑔is given by,  

𝑅𝐴𝑣𝑔 = (1 −
𝜏

𝑇
) [𝑃𝐻

0(1 − 𝑃𝐹𝐴)𝐶0 + 𝑃𝐻
1(1 − 𝑃𝐷)𝐶1]   (14) 

where, 𝜏  is the sensing time, 𝑃𝐻
0  and 𝑃𝐻

1  are the probabilities of hypothesis ℋ0  and ℋ1 

respectively, 𝐶0 and 𝐶1 are the capacity when PU is absent and present respectively.  

Machine learning can be effectively employed to optimize system parameters such as sensing 

thresholds, transmission power, and distance to enhance detection performance and maximize 

throughput in cognitive radio networks. For sensing threshold optimization, reinforcement 

learning technique can be used to predict the optimal threshold (𝜆) based on parameters such 

as signal-to-noise ratio (SNR), number of samples, and transmission power. Throughput can 

be maximized using reinforcement learning (RL), with Q-learning enabling dynamic 

adjustment of transmission power 𝑃𝑆𝑈  and SU-to-receiver distance 𝑑𝑆𝑅  based on real-time 

feedback. Additionally, the prediction of primary user (PU) activity can be facilitated using 

ML, allowing the secondary user transmitter (SU-Tx) to efficiently decide when to transmit or 

sense, thereby improving spectrum utilization. Furthermore, ML techniques can assist in 
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adaptive power control and interference mitigation by learning from historical channel 

conditions and interference patterns. 

3. Results & Discussion: 

 
Fig. 2: SNR vs Detection Probability (𝑃𝐷) for various values of 𝑃𝐹 

Fig.(2) illustrates the relationship between SNR (dB) and detection probability 𝑃𝐷 for three 

different false alarm probabilities (𝑃𝐹), both with and without reinforcement learning (RL). 

Each color represents a different 𝑃𝐹 value: blue for 0.1, green for 0.01, and red for 0.001. Solid 

lines show conventional performance, while dashed lines represent RL-enhanced results. As 

SNR increases, 𝑃𝐷  rises for all cases, approaching 1 at high SNR. Lower 𝑃𝐹  values (red 

curves) require higher SNR to achieve the same 𝑃𝐷, reflecting the classic trade-off between 

sensitivity and specificity in energy detection. The RL curves (dashed) consistently outperform 

their No RL counterparts, achieving higher 𝑃𝐷 at lower SNR for each 𝑃𝐹. This demonstrates 

that RL-based optimization improves detection performance, especially in challenging low-

SNR environments, by adaptively tuning system parameters for more reliable spectrum 

sensing. 

 
Fig. 3: SNR vs Detection Probability (𝑃𝐷) for various values of 𝜆 
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Fig.(3) presents the variation of detection probability (𝑃𝐷) with respect to SNR (dB) for three 

different detection thresholds (𝜆 = 1.5, 2.0, 2.5), comparing analytical results (solid lines) with 

reinforcement learning (RL)-enhanced results (dashed lines). As SNR increases, 𝑃𝐷 rises for 

all thresholds, approaching 1 at high SNR. Lower thresholds (blue) yield higher 𝑃𝐷  at low 

SNR, while higher thresholds (red) require greater SNR for reliable detection, illustrating the 

classic trade-off between sensitivity and selectivity. The RL curves consistently outperform the 

analytical ones, especially at low SNR, indicating that RL adaptively optimizes system 

parameters (such as threshold or sensing time) to improve detection performance. This 

demonstrates the effectiveness of RL in enhancing spectrum sensing reliability in cognitive 

radio networks, particularly under challenging low-SNR conditions. The plot justifies the use 

of RL for robust, adaptive energy detection. 

 
Fig. 4: Sensing Time (τ) vs Throughput (𝑅𝐴𝑣𝑔) for different values of 𝑃𝑃𝑈 

Fig.(4) illustrates the relationship between sensing time (𝜏) and average throughput (𝑅𝐴𝑣𝑔) for 

three different primary user (PU) transmit powers, 𝑃𝑃𝑈 = 1, 3, 10, comparing analytical results 

(solid lines) with reinforcement learning (RL)-enhanced results (dashed lines). As sensing time 

increases, throughput decreases for all cases, since longer sensing reduces the available 

transmission time. For lower 𝑃𝑃𝑈 values (blue and green), RL provides a noticeable throughput 

improvement, especially at moderate sensing times, by adaptively optimizing system 

parameters such as sensing duration or threshold. For the highest 𝑃𝑃𝑈 (red), the impact of RL 

is minimal, as strong PU interference dominates. The nature of the plot highlights the trade-off 

between sensing accuracy and data transmission: while more sensing can improve detection, it 

also limits throughput. This figure justifies the use of RL for dynamic sensing time adaptation, 

particularly when PU interference is moderate or low. 
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Fig. 5: SNR vs Capacity (𝐶0 and 𝐶1) 

 

This figure displays the variation of channel capacity (𝐶0 and 𝐶1) with respect to SNR (dB), 

comparing analytical results (solid lines) and reinforcement learning (RL)-enhanced results 

(dashed lines). 𝐶0 (blue) represents the capacity when the primary user (PU) is absent, while 

𝐶1 (red) is the capacity when the PU is present, causing interference. Both capacities increase 

nonlinearly with SNR, following the logarithmic nature of the Shannon capacity formula. 

However, 𝐶1 remains consistently below 𝐶0 due to the impact of PU interference. The RL-

based curves are slightly above their analytical counterparts, indicating that RL strategies 

(such as adaptive power control or interference mitigation) can further enhance capacity in 

both scenarios. The figure justifies the adoption of RL in cognitive radio networks to 

maximize spectral efficiency, especially under varying SNR and interference conditions, by 

adaptively optimizing system parameters for improved communication performance. 

 

 
Fig. 6: Distance (𝑑𝑆𝑅) vs SNR for different values of 𝑃𝑃𝑈 
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Fig.(6) illustrates the variation of SNR (in dB) versus the distance 𝑑𝑆𝑅 (in meters) between the 

Secondary User Transmitter (SU-Tx) and Secondary User Receiver (SU-Rx) for different 

Primary User (PU) transmit powers: 0.1 W, 1 W, and 10 W. Solid lines represent analytical 

SNR values, while dashed lines show results with reinforcement learning (RL) optimization. 

As distance increases, SNR decreases due to path loss. Higher PU transmit power results in 

higher SNR across all distances. RL-based optimization consistently yields better SNR 

performance than analytical calculations alone, demonstrating its effectiveness in adapting 

transmission parameters to mitigate path loss effects. This performance gain becomes more 

evident at larger distances. 

 
Fig. 7: SNR vs Throughput (𝑅𝐴𝑣𝑔) for various values of 𝜆 

Fig.(7) shows the average throughput 𝑅𝐴𝑣𝑔 (in bits/sec/Hz) versus SNR (in dB) for different 

sensing thresholds 𝜆=1.5, 2.0, 2.5. Solid lines represent analytical results, while dashed lines 

represent results using reinforcement learning (RL). As SNR increases, throughput also 

increases due to improved signal quality. Higher sensing thresholds result in greater 

throughput across all SNR values, indicating better utilization of idle spectrum. The RL-based 

approach consistently outperforms analytical methods, especially at higher SNR, by adaptively 

optimizing parameters like sensing time and transmission power. This demonstrates RL's 

effectiveness in maximizing throughput in cognitive radio networks. 

 

4. Conclusion:  

This study delivers a comprehensive analysis of a Cognitive Radio Network (CRN) system 

employing energy detection-based spectrum sensing in the presence of Rayleigh fading and 

path loss. By incorporating realistic wireless conditions and leveraging Gaussian 

approximations, it accurately models detection probability, false alarm probability, missed 

detection probability, and average throughput. The research underscores how system 

performance is sensitive to parameters such as sensing threshold, sensing time, sample size, 

and SNR. Reinforcement learning, particularly Q-learning, is introduced to optimize 

transmission power and sensing duration, directly improving throughput and detection 

accuracy. Simulation results confirm that reinforcement learning consistently outperforms 

static approaches, especially in low-SNR and variable environments, by adaptively tuning 
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system parameters to reduce false alarms and missed detections. The findings validate the 

potential of learning-based CRNs to intelligently adapt to dynamic spectrum environments and 

efficiently utilize available spectrum without compromising the primary user's integrity. 

Furthermore, the use of ML facilitates more responsive and scalable spectrum sensing 

strategies, essential for future wireless networks with high density and variable usage patterns. 

Overall, this work lays a solid foundation for developing intelligent, robust, and efficient 

CRNs, offering a pathway toward next-generation dynamic spectrum access systems in 

increasingly congested and unpredictable wireless landscapes. 
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