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Abstract—The rapid growth of Internet of Things (IoT) networks has significantly raised the cyberattack surface, making 

such networks vulnerable to advanced botnet attacks. Traditional Intrusion Detection Systems (IDS) become ineffective in IoT 

networks owing to their rigid adaptability, high latency, and restrictive resources. To address these issues, this paper introduces 

a scalable two-layer machine learning framework for real-time botnet intrusion detection in IoT networks. The proposed system 

employs lightweight classifiers for quick screening of normal traffic in the first layer and sophisticated models for deep analysis 

of suspicious flows in the second layer. A robust preprocessing pipeline incorporating feature selection and class balancing 
strategies enhances model efficiency and detection accuracy. Experimental results demonstrate enhanced performance in 

detection rates, false positive reduction, and inference speed, thereby determining the model suitability for latency-restricted and 

resource-limited environments. The framework effectively maintains accuracy and computational cost, offering an efficient 

solution for modern IoT security systems 

 

Index terms—IoT security, botnet detection, intrusion detection system, layered machine learning, SMOTE. 

 

I. INTRODUCTION  

The Internet of Things (IoT) has significantly accelerated the merging of smart environments through the 

interconnecting of billions of devices across various industries, including healthcare, industrial automation, 

and home systems. Nevertheless, the expansion mainly intensifies the attack surface, with IoT systems 

being extremely vulnerable to botnet-driven malicious activities. Botnets, which consist of networks of 

hijacked IoT devices controlled by malicious users, can compromise services via Distributed Denial of 

Service (DDoS) attacks, enable data breaches, and provide unauthorized access, hence resulting in 

tremendous security and privacy problems [1]. 

Traditional Intrusion Detection Systems (IDS) perform inadequately in such networks owing to their 

limited processing capacity, latency demands, and incapability to confront the heterogeneous and dynamic 

nature of flow patterns typical of Internet of Things (IoT) networks [2]. Such shortcomings render real-

time botnet traffic detection especially challenging and less accurate. Innovative solutions such as 

federated learning [21], edge computing deployments [22], and adaptive lightweight frameworks [23] are 

designed to mitigate the above weaknesses. 

Machine learning (ML) and deep learning (DL) can be utilized to enhance IDS performance, but existing 

models typically cannot optimize detection accuracy, inference speed, and resource efficiency together [3]. 

Class imbalance, high-dimensional features, and model complexity also limit their usage in real-world 

real-time, resource-limited IoT applications. These issues have been overcome in some research via using 

explainable AI models [24], hybrid ML frameworks [25], and interpretable detection techniques [26]. 

Research Gap: Even with additional research focus on ML-based intrusion detection, an efficient, real-time 

botnet detection system that scales well with the appropriate accuracy, latency, and computational cost 

remains an open link. Blockchain-based botnet detection [27], variational auto-encoders with constraints 

[28], and graph-partitioning-based distributed mechanisms [29] are promising but under-developed in 

commercial-grade systems. Graph neural network and subgraph sampling method-based recent 

developments also have been promising directions [30]. 

 The research suggests an expandable two-layer machine learning system that uses high-performance 

classifiers to enable fast filtering of traffic as well as advanced models for a detailed analysis of potentially 

malicious data. This suggestion is  backed by previous research on ensemble classifiers [32] and federated 

learning models emphasize user privacy [34]. 
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Major contributions of this paper are: 

 Suggests a layer-based ML structure that maximizes detection rate and accuracy for IoT botnet detection 

[25], [30]. 

 Blends light models (DT, KNN) for coarse screening with high-performance classifiers (RF, XGBoost) 

for fine-grained analysis [32], [33]. 

 uses hybrid feature selection and Synthetic Minority Over-sampling Technique to handle class imbalance 

[24], [28]. 

 Exhibits outstanding detection performance with comprehensive benchmarking on benchmark datasets to 

ensure its application in real-time, resource-constrained IoT settings [31], [33]. 

The rest of this manuscript is organized as follows: Section II is literature review; Section III is 

description of methodology and proposed tiered model; Section IV is experimental setup and results; and 

Section V is concluding remarks and possible future research directions. 

 

II. RELATED WORK 

Intrusion Detection Systems (IDS) need to defend IoT networks against a multitude of cyber-attacks, 

including botnet attacks. IDS methods nowadays increasingly depend on machine learning and deep 

learning to enhance detection. Real-time applicability in IoT environments is nevertheless constrained by 

challenges such as resource constraints, latency, and class imbalance. 

 

A. ML and DL-Based Botnet Detection Methods 

Early work explored the use of machine learning algorithms, such as Decision Trees (DT), Support 

Vector Machines (SVM), and K-Nearest Neighbors (KNN), which, as efficient as they are 

computationally, are not good generalizers to the IoT traffic's heterogeneity and time variability [3]. 

Recent studies have utilized deep learning models—like Convolutional Neural Networks (CNNs) and 

Recurrent Neural Networks (RNNs)—in an attempt to improve detection accuracy; however, their high 

computational complexity makes them unsuitable to run on energy-limited IoT devices [6], [7]. 

For instance, Aldhyani et al. [1] introduced a deep learning and ensemble IDS with excellent detection 

accuracy but longer inference time. Similarly, Akhter et al. [3] compared IoT intrusion detection ML 

solutions and were confronted with accuracy-latency trade-offs. Ramadan et al. [7] used advanced DL 

models for botnet attack detection but were limited by latency due to complexity in models and real-time 

deployment was not feasible. 

Other existing models attempt to improve performance by employing federated learning for edge-

deployable detection [21], adaptive lightweight ML models for real-time processing [23], and graph-based 

partitioning for scalable intrusion detection [29]. These models attempt to minimize computational 

overhead while ensuring decent detection accuracy. 

 

B. Limitations of Current Methodologies 

Even though promising, existing approaches have certain technical limitations. First, latency remains the 

nemesis for DL models for real-time IoT applications. Second, IoT data property of high-dimensional data 

decreases the efficiency of the model. Third, majority class bias results due to class imbalance. Sarker et 

al. [4] identified this model complexity and real-time responsiveness issue. Islam et al. [5] proposed 

hybrid ML-DL models for the same, but computational expenses remain high for large-scale deployment. 

Works like [30] and [31] have identified how graph neural networks and other sophisticated sampling 

techniques (e.g., GraphSAINT) can make the model more scalable, though they are used sparingly 

because of complexity and no real-time guarantees. Explainable AI models [24], [26] also offer 

transparency but come with overhead of interpretability. 
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C. Transitioning to Layered Learning Architectures 

In order to resolve the identified issues, multi-layer machine learning architectures have been proposed. 

The architectures try to mix fast filtering techniques with more precise, resource-focused classifiers. The 

first layer effectively filters out benign traffic through light models like Decision Trees (DT) and K-

Nearest Neighbors (KNN), whereas the next layer utilizes sophisticated classifiers (like Random Forest 

and XGBoost) for broader inspection [25], [26]. Hierarchical models minimize total processing needs 

without sacrificing high accuracy rates. Federated models [34] also facilitate distributed light detection 

with privacy-preserving methods in Internet of Things (IoT). 

 

In addition, authors such as Prasath and Kavitha [20] showed that CNN-XGBoost hybrids are capable of 

high accuracy and efficient inference, which has inspired such layer-based architectures. Additionally, 

ensemble methods with flow-based feature extraction [32] and constrained variational autoencoders [28] 

help improve detection with fewer false positives. 

 

TABLE I 

COMPARATIVE ANALYSIS OF RELATED WORKS 

 

Ref. Method Datase

t 

Accurac

y (%) 

Key 

Limitatio

n 

[1] DL + 

Ensemb

le 

Custo

m 

97.5 Latency 

and 

resource 

overhead 

[3] ML 

(DT, 

SVM, 

KNN) 

IoT-23 94.1 Scalabilit

y and 

imbalanc

e issues 

[5] Hybrid 

ML-DL 

NSL-

KDD 

96.3 High 

complexit

y, low 

real-time 

suitability 

[6] CNN, 

RNN 

Bot-

IoT 

96.7 High 

computati

onal 

overhead 

[7] Deep 

Neural 

Networ

k 

Custo

m IoT 

97.9 Latency 

bottlenec

k and 

limited 

scalabilit

y 

[21] Federat

ed 

Learnin

g 

Custo

m 

96.2 Communi

cation 

overhead 

in 

training 

[23] Lightw Simula 95.4 Trade-off 
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eight 

ML 

ted in 

complex 

attack 

classificat

ion 

[25] Hybrid 

Model 

UNS

W-

NB15 

97.1 Feature 

selection 

impact 

[29] Graph 

Partitio

ning 

Bot-

IoT 

95.8 Limited 

deployme

nt due to 

complexit

y 

 

D. Summary and Research Gap 

It can be observed from the comparative analysis that although ML and DL models offer high detection 

accuracy, most of them are not meeting the real-time demands of IoT applications in terms of latency, 

class imbalance, and computational cost. Hybrid approaches counteract some of these issues but are hardly 

ever designed to run on IoT settings with their constrained resources. This document fills the current 

research gap by proposing a scalable machine learning structure with two layers that balances processing 

efficiency and accuracy. This combines the use of modern, lightweight classifiers with a robust 

preprocessing pipeline for feature extraction and class imbalance handling [28], [33], [34], thus facilitating 

real-time, accurate, and efficient IoT botnet attack detection 

 

III. METHODOLOGY 

The suggested method employs a scalable two-layer machine learning framework for real-time botnet 

intrusion detection in IoT networks. The following presents the datasets employed, preprocessing methods, 

feature selection methods, layered classification framework design, and experiment setup 

for training and validation. Figure 2 illustrates the system's data flow. 

 

A. Preprocessing Framework  

The experimental assessment employs two well-documented benchmark datasets—UNSW-NB15 and 

Bot-IoT. The UNSW-NB15 dataset, developed by the Australian Centre for Cyber Security, comprises 

more than 2.5 million records that include both attack and normal traffic, labeled across 49 distinct features 

incorporating flow, content, and timing features. This dataset has nine classes of attacks, for instance, DoS, 

Exploits, and Fuzzers [15], [19]. Alternatively, the Bot-IoT dataset, developed at the UNSW Canberra 

Cyber Range Lab, models an IoT network with varied botnet attack types, such as DDoS, reconnaissance, 

and data exfiltration. It offers more than 70 features that include both statistical and protocol-level features 

of network traffic [11], [14]. Both datasets suffer from a severe class imbalance where specific types of 

attacks are over-represented while others are under-sampled, hence requiring adequate treatment during the 

training [22]. 

Raw data were initially processed through a series of preprocessing operations to build consistency, 

numerical completeness, and strength throughout the training process. Label encoding was used to 

transform all categorical features, such as the protocol’s types and class labels, to a numerical form 

appropriate for supervised learning. To normalize feature scales, each numerical feature X was rescaled 

using the Min-Max normalization technique, as shown in Equation (1), where Xmin and Xmax denote the 

minimum and maximum values of feature X, respectively 

 

Xₙₒᵣₘ = (X - Xₘᵢₙ) / (Xₘₐₓ - Xₘᵢₙ) 
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This conversion ensures that every attributeof input is inthe interval [0,1], thus improving the performance 

of distance-based models such as KNN and neural networks [15], [22]. Due to class imbalance of both 

datasets, Synthetic Minority Over-sample Technique (SMOTE) was applied to generate 

synthetic samples of minority classes and Additionally for the case of extreme skewness, selective 

undersampling of the majority class was achieved to avoid the dangers of overfitting and bias [11], [14], 

[24]. 

 

B. Layered Classification and Model Training 

High-dimensional data sets are typically accompanied by extraneous noise and redundancy, which 

negatively impact model performance. To counter this problem, a hybrid feature selection method was 

employed. The first step was correlation analysis by using Pearson coefficients to select and eliminate 

highly correlated variables, thereby reducing multicollinearity. The second step was the use of the chi-

square test to select statistical significance of categorical features towards class labels. Mutual Information 

(MI) further enhanced the process, which quantifies the amount of information shared between each 

feature and the target class label [10], [13]. Finally, a wrapper-based Genetic Algorithm (GA) was applied, 

as per the methodology suggested by Alqahtani et al. [12], [17], to optimize the selected feature subset by 

searching for combinations based on classification performance. The multi-staged selection process 

ensured the retention of only the most discriminative and non-redundant features while reducing 

computational complexity and enhancing generalization 

 

 

 
 

Fig 1. Proposed Methodology for Rapid Detection of IoT Botnets 

 

The key component of the proposed system is the two-layer classification model that seeks the balance 

between detection efficiency and inference speed. The first layer is composed of light classifiers in the 

form of Decision Tree (DT) and K-Nearest Neighbors (KNN), which are utilized for the fast filtering of 

benign traffic. The models are light in computation and provide fast responses, thereby being suitable for 

first-level filtering in resource-constrained IoT systems [25], [26]. Benign traffic detected at this stage is 

discarded, and potentially malicious samples are passed to the second stage for thorough analysis. 

The second level entails more advanced classifiers, i.e., Random Forest (RF), Extreme Gradient 

Boosting (XGBoost), and Multilayer Perceptron (MLP). RF is overfitting-resistant and exhibits robust 

performance in handling high-dimensional data. XGBoost has high prediction accuracy, especially in 

imbalanced classification task problems [27]. The MLP, being a deep neural network classification, is 

capable of identifying non-linear traffic data relationships, thus improving the model's ability to detect 

stealth or unknown attacks [28]. All classifiers are trained using the optimized feature set from the initial 
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stage, thus reducing the training time as well as improving accuracy. Figure 2 shows the sequential data 

flow through the two-tier framework from raw input to output prediction. 

The data was split into three sets: 70% for training, 15% for validation, and 15% for testing. A five-fold 

cross-validation approach was used to enhance the model's robustness and prevent overfitting [29]. 

Performance was measured in terms of accuracy, precision, recall, F1-score, and area under the ROC curve 

(AUC) to enable comprehensive assessment of detection ability for all classes. In training, SMOTE was 

used continuously to maintain the classes balanced, especially critical for the Bot-IoT dataset that is very 

attack-biased [26]. The architecture was implemented with Python 3.10, with Scikit-learn for conventional 

models and TensorFlow 2.14 for deep learning blocks. 

 

IV. EXPERIMENTAL SETUP AND RESULTS AND DISCUSSION 

A. Research Setup 

All the experiments were run on a workstation powered by an Intel Core i7-12700 CPU at 2.10 GHz, 32 

GB of RAM, and an NVIDIA RTX 3060 GPU with 12 GB of VRAM. The deployment was carried out in 

Python 3.10, Scikit-learn for vanilla machine learning, and TensorFlow 2.14 for deep learning parts. Data 

management and visualization tasks were accomplished with Pandas, NumPy, and Matplotlib. 

 

B. Classifier Evaluation Metrics 

The performance metrics used to measure the performance of the classifiers were Accuracy, Precision, 

Recall, F1-Score, and AUC (Area Under the ROC Curve). These are overall measures of the quality of 

classification for both unbalanced and balanced data sets. For added robustness, 5-fold cross-validation 

was performed in the entire training process, and class imbalance was handled by using SMOTE, 

specifically for the Bot-IoT data set [11], [14], [26]. 

 

TABLE II. 

CLASSIFIER PERFORMANCE ON BOT-IOT DATASET 

 

 
 

C. Performance Visualizations. 

 

 
 

Fig2. Comparison of Classifier Performance Metrics on Bot-IoT Dataset 

 

Table II illustrates the performance of the individual classifiers in the two-layer framework on the UNSW-

NB15 and  
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Bot-IoT datasets. Interestingly, the best overall performance across all the measures of evaluation was 

attained by the hybrid CNN-LSTM model. Visually compares these performance metrics as,the confusion 

matrices for Random Forest and CNN-LSTM classifiers are shown in figure 3and figure 4, respectively. 

These tables help analyze false positives and false negatives. 

 

 
 

Fig 3. Confusion Matrix for Random Forest Model 

 

The confusion matrix given for a Random Forest model that is predicting "Bot" and "Non-Bot" instances 

shows that there are 880 true negatives (correctly classified non-bots) and 860 true positives (correctly 

classified Bots). The model incorrectly classified 20 as false positives (classifying Non-Bots as Bots) and 

40 as false negatives (classifying true Bots), showing a superb overall performance in distinguishing 

between the two categories, with a remarkable number of correct predictions and a relatively low rate of 

misclassifications. 

This CNN-LSTM model confusion matrix labels "Bot" and "Non-Bot" samples. It indicates 890 true 

negatives (accurate non-Bot identification) and 870 true positives (accurate Bot identification).The model 

yielded 10 false positives (wrong identification of Non-Bots as Bots) and 30 false negatives (missed 

identification of actual Bots), which is an extremely accurate performance with very minimal errors in 

identifying between the two classes. 

 

 
 

Fig 4.  Confusion Matrix for CNN-LSTM Model 

 

Figure 4 presents the ROC curves of the RF and CNN-LSTM classifiers. The AUC of the CNN-LSTM 

was 0.99, which was superior to the RF model. 
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Fig 5. ROC Curves 

 

(a) Random Forest (AUC = 0.97) 

(b) CNN-LSTM (AUC = 0.99) 

All the subfigures of Figure 4 illustrate the relationship between the true positive rate and the false 

positive rate. The closer to the top-left corner the curve is, the better the model. 

 

D. Inference Time and Computational Cost 

Inference time per sample for an individual was compared to consider the feasibility of real-time usage. 

Although the CNN-LSTM model had a slightly higher average inference time (around 12 ms), its 

improved classification accuracy justifies the resulting computational cost. 

Figure 4 shows Inference Time Comparison Between Models 

Decision Tree and KNN models provided less latency but with a compromise towards accuracy. CNN-

LSTM provided the best trade-off between responsiveness and performance. 

 

E. Comparative Analysis with Other Works 

The suggested CNN-LSTM model has been compared with previous state-of-the-art approaches. As 

shown in Table III, it outperformed previous models in terms of accuracy and AUC. 

 

TABLE III 

COMPARISON WITH RELATED WORKS 

 

Reference Model Dataset Accuracy 

(%) 

AUC 

[1] DL + 

Ensemble 

Custom 97.5 0.9

7 

[30] RNN + 

LSTM 

Bot-

IoT 

97.1 0.9

6 

[33] ML 

Ensemble 

IoT-23 96.8 0.9

5 

This 

Work 

CNN-

LSTM  

Bot-

IoT 

98.6 0.9

9 

 

This evaluation confirms the scalability and effectiveness of the proposed two-layer solution, especially 

when integrated with CNN-LSTM for thorough temporal-spatial traffic pattern recognition. 
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V.  CONCLUSION AND FUTURE WORK 

This paper introduces a scalable two-layer machine learning framework for real-time botnet intrusion 

detection in Internet of Things (IoT) networks. Light-weight classifiers—Decision Tree and K-Nearest 

Neighbors—are employed for preliminary traffic filtering, and sophisticated classifiers—Random Forest, 

XGBoost, and Multilayer Perceptron—are employed for subsequent traffic analysis. An end-to-end 

preprocessing pipeline, involving feature selection (Mutual Information and Genetic Algorithm) and 

SMOTE, to handle class imbalance, improves model efficiency. The system greatly improves detection 

accuracy, minimizes false positives, and accelerates inference. A hybrid CNN-LSTM model further 

improves performance by learning spatial-temporal patterns, with enhanced accuracy and AUC on 

benchmark datasets. 

Future development will focus on making it more flexible and expandable with: 

• Real-time deployment based on edge/fog computing 

• Decentralized private training based on federated learning, 

• Lightweight deep learning models (e.g., MobileNet, TinyML) for low-resource devices, 

• Adaptive learning to be able to successfully counter changing threats, 

• Explainable AI (XAI) for enhancing decision transparency, and • Graph Neural Networks (GNNs) for 

the identification of advanced relational patterns in IoT traffic. 

These guidelines aim to improve real-time, accurate, and transparent IoT botnet detection in different 

environments. 
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