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Abstract:  

One of the most destructive natural hazards has been earthquakes that lead to massive loss of human life and 

destruction of structures and property as well as socio-economic interference. Proper identification of possible 

area affected can go a long way towards mitigation and prevention measures of any disaster. This paper outlines 

a unified methodology to conduct predictive modeling of earthquake impact zone using machine learning 
algorithm and operations research (OR) optimization algorithms. In addition, historical catalogs of seismic 

events, geospatial data on fault lines, maps of susceptibilities of soil liquefaction, and socio-economic 

vulnerability markers were also employed as input. Gradient Boosting Machines (GBM) and Convolutional 

Neural Networks (CNN) were used in the modeling pipeline to predict spatial hazards, whereas a mixed-integer 

linear programming (MILP) model was designed to optimize resources to respond to emergencies through the 

lens of time-sensitive limitations. The system has been applied to three seismically active areas of the world the 

Himalayan Frontal Thrust (India-Nepal), the Nankai Trough (Japan), and the San Andreas Fault (USA). 

Findings showed that mean prediction accuracy was 92.4 percent in high-impact areas and that the optimized 

OR framework minimized maximum estimated emergency response time over baseline allocation policies by 

18-to 26 percent. The predictive model was validated by the strong correlation between spatial hazard heatmaps 

and historical damage data and indicated that the combined AI-OR risk-based approach can be scalable in 

managing seismic risk. The report also points to the possible real-time integration with early warning to make 
pre-planning evacuation, prioritization in infrastructure strengthening and optimal resource allocation possible 

in earthquake-prone areas. 
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I. INTRODUCTION 

Earthquakes can be defined as some of the most destructive natural hazards as they can lead 

to disastrous loss of human life and collapse of infrastructural facilities and socio-economic 

disruption in the longer term. Earthquakes also tend to arrive with little or no prior warning, 

which means they are some of the disasters which can hardly be mitigated. United Nations 

Office for Disaster Risk Reduction (UNDRR) noticed that almost 23 percent of all disaster-

related deaths worldwide have been occasioned by seismic events in the period 2000-2024 

and estimated financial losses caused by these catastrophes are just over USD 1 trillion. 

Spatial variability of the seismic hazard, combined with population density and 

vulnerabilities of the infrastructure, highlight the timeliness of precise timely predictive 

modeling of areas of possible impact. The customary approaches to assessing seismic hazards 

are highly dependent on geological surveys, information about tectonic plates and 

probabilistic seismic hazard models (PSHA). Although these methods are helpful in 

estimating the long-term possibilities of an earthquake, they usually are not precise enough in 

the spatial level and in time in making operational decisions. Moreover, they tend to lack the 

socio-economic vulnerability factors, as well as, the optimization of logistics of emergency 

response. This generates a space between risk evaluation as well as disaster risk reduction 

measures that can be taken. The advent of artificial intelligence (AI) and machine learning 

(ML) in the recent past has provided new opportunities in the prediction of the impact of 

earthquakes. With the use of extensive data in the seismic catalogs and satellite images, and 

related geospatial infrastructure databases, AI can be trained to learn the complicated, non-

linear connections between seismic precursors and patterns of resultant damage. As an 

example, convolutional neural networks (CNNs) can be used as deep learning structures to 

identify spatial features in geospatial data and gradient boosting models allow the 

improvement of predictiveness through a lineage of weak learners. Such approaches are 

superior to the standard regression-based hazard models especially across incongruent 

terrains and heavily populated places. But forecasting impact areas is not the whole problem. 

Sound churches of earthquake risk mitigation also demand application of operations research 

(OR) methods that maximize the decision-making in the domain of uncertainty. Activation of 

resources, e.g., the dispatch of medical work teams, rescue teams, food aid, and housing tents, 

has to be quick and effective in the case of a recent earthquake. Operations research 

techniques or methods such as mixed-integer linear programming (MILP), network flow 

programming and multi-criteria decision-making (MCDM) have widespread approaches to 

establishing the most efficient use of resources and the least sojourn time and casualty rate. 

The possible advantage of such approach is vast. Take, for instance advance prediction of a 

hazard-prone district that might provoke rescue-units and equipments in the affected region, 

enough to cut the response time down to minutes rather than hours. On the same note, 

emergency planners could optimize and manage evacuation routes by clearing potential 

blockades early during an emergency so as to limit the number of people in one route to as 

little as possible and create maximum safety. Previous literature has separately examined AI 

models of seismic forecasting and OR models of disaster logistics, as they are both relatively 

new propositions studied separately. Combined applications of them, therefore, remain under-

researched. In addition, few studies are available that support the surveys where the 

integrated frameworks have been verified in historical earthquake recordings in various 

geographic regions and socio-economic situations. This paper will fill these gaps by 

conceptualizing an integrated AI-OR framework, testing it on three of the highest seismic-

risk zones, i.e. the Himalayan Frontal Thrust (India-Nepal), the Nankai Trough (Japan), and 

the San Andreas Fault (USA), and assessing its performance, either in terms of predictive 
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accuracy or operational efficiency measures. The rest of this paper is structured as follows: 

Section II presents a review of the current literature present in the usage of AI in the field of 

predicting earthquakes and the use of OR in dealing with disasters. Part III explains the 

research methodology, which involves data and collection, AI model architecture, and 

optimization framework. Section IV gives the outcome and discussion of the integrated 

system. Section V is concerned with the policy implications, emergency planning 

implications, and future research. Lastly, the paper ends in Section VI with the 

recommendations regarding the operational implementation of AI powered earthquake impact 

modelling systems. 

 

II. RELEATED WORKS 

In recent decades, the role of artificial intelligence (AI) and machine learning (ML) in 

evaluating seismic hazards has exploded, as has new computational power, the availability of 

more geospatial data, and newer statistical models that can enable AI techniques. The 

traditional earthquake forecasting techniques were based mainly on probabilistic seismic 

hazard analysis (PSHA) and deterministic fault ruptures that were only able to give long-term 

hazard maps without being operationally predictable on short-term basis [1]. To close such 

gap, AI-based models have been developed whose trained models present data-driven 

solutions that have been able to extract hidden relationships in heterogeneous datasets, such 

as seismic catalogs, geodetic measurements, and satellite images. A number of experiments 

have been conducted concerning applying supervised learning algorithms to earthquake 

prediction. Seismic intensity classification has then been carried out using Random Forest 

(RF) and Gradient Boosting Machines (GBM) with the machines having a greater allowed 

predictive accuracy than the linear regression models [2]. Geospatial raster data have been 

processed by deep learning frameworks including Convolutional Neural Networks (CNNs) to 

determine areas characterized by high seismic vulnerability [3]. CNN-based models can 

improve upon broad applications of the conventional spatial interpolation approach because 

they also represent spatial dependence on a local and regional scale of ground motion data 

[4]. Besides, the hybrid methods that integrate ML with Bayesian networks have proven 

better uncertainty quantification in predicting hazards [5]. Besides hazard forecasting, AI has 

also been developed to be used in damage evaluation and the post effects analysis. As one of 

the examples, damage classification via deep learning can be integrated in estimates of spatial 

probability of building collapse following a major earthquake via the use of ShakeMap data 

[6]. Likewise, the Support Vector Machines (SVM) have been used to indicate classifications 

of urban data on structural vulnerability parameters derived in LIDAR and multispectral data 

[7]. These methods lend credence to their swift ability to impact assessment thus allows 

disaster managers to distribute resources relatively better. Even though AI offers great 

improvement in terms of accuracy of predictions, it can not specifically resolve the situation 

of operational decisions in the response to earthquakes. It is here that operations research 

(OR) comes into the picture. The OR techniques especially optimization models have been 

applied in the management of disasters to design the resources, evacuation and supply 

systems [8]. Mathematical models have been developed in the Mixed-Integer Linear 

Programming (MILP) that optimally deploys rescue teams and constrains on available 

resources, travel time, road capacity and other such factors [9]. Moreover, multi-objective 

optimization frameworks have been suggested to include tradeoffs among conflicting 

priorities and they include minimization of casualties, economic loss, and maximization of 

critical infrastructure coverage [10]. Connection of AI and OR is still a topic of new research 

in focus. Some of the signs of developments in this area have incorporated predictive 
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modeling of hazards with planning of responses using optimizations. As an example, Zhang 

et al. combined an artificial neural network-based seismic hazard model with a vehicle 

routing optimization algorithm to maximize the effectiveness of the prompt deployment of 

emergency medical services in the case of earthquakes [11]. The same way, Hsu and the 

others built a combined damage prediction system of supply chains to improve the resilience 

of supply chains with the earthquake prone regions [12]. The outcome of these studies is 

promising concerning the application of an AI-or framework to enhance disaster preparedness 

and response but is still not fully demonstrated due to cross-regional cross-regional validation 

(scale). The inclusion of multi-source datasets is another critical aspect that is to be 

considered. Geophysical (e.g. ground acceleration, tectonic stress fields) and socio-economic 

vulnerability (e.g. population density, building codes, infrastructure resilience) indicators are 

increasingly being incorporated in modern predictive models to produce more informative 

risk assessment [13]. Contributing factors of human vulnerability in the model of a threat 

posed by AI has been demonstrated to have a large impact on the prioritization of the 

response measures [14]. Such as blending high resolution population maps with hazard 

heatmaps, so planners of any communities in danger can see the community most at risk and 

optimize evacuation plans accordingly. Over the past few years, the application of remote 

sensing technologies has become a fundamental part of modeling the impact of earthquakes. 

High-resolution optical and Synthetic Aperture Radar (SAR) image data gives us the pre- and 

post-event data of surface deformations that may be incorporated into machine learning 

algorithms monitoring and validation purposes and in the post-event [15]. With this 

integration, hazard maps and resource allocation plans can be continuously updated into a 

dynamic decision-support system as opposed to when hazard assessments are done on a 

standalone basis. 

 

III. METHODOLOGY 

3.1 Research Design 

This study applies a mixed-method, spatial–temporal design combining AI-driven seismic 

hazard prediction with operations research (OR)–based emergency response optimization. 

The predictive modeling component analyzes seismic, geological, and socio-economic data 

using machine learning algorithms, while the OR component applies optimization techniques 

to efficiently allocate emergency resources after a seismic event. The integration aims to 

provide both pre-event forecasting and post-event decision support in a unified framework 

[16]. 

3.2 Study Area Approach 

The research focuses on three high-seismicity regions with diverse tectonic and socio-

economic contexts: 

 Himalayan Frontal Thrust (India–Nepal) – active continental collision zone. 

 Nankai Trough (Japan) – subduction zone prone to megathrust earthquakes. 

 San Andreas Fault (California, USA) – transform fault system in a high-density 

urban setting. 

These regions were selected for their variation in seismic mechanisms, population exposure, 

and the availability of high-resolution hazard and infrastructure datasets [17]. 
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Table 1: Study Area Characteristics 

Region Hazard 

Type 

Major 

Historical 

Events 

Population 

Density (per 

km²) 

Infrastructure 

Risk Profile 

Data 

Availability 

Himalayan 

Frontal 

Thrust 

Shallow 

crustal 

quakes 

1934, 2015 450–700 Low-code rural 

buildings 

High 

Nankai 

Trough 

Megathrust 

subduction 

1944, 1946 

(predicted) 

300–600 Coastal urban, 

tsunami 

exposure 

Very High 

San Andreas 

Fault 

Strike-slip 

transform 

1906, 1989, 

2014 

250–500 Critical 

infrastructure 

proximity 

High 

3.3 Data Collection and Sources 

Datasets were compiled from multiple sources for model training, validation, and operational 

planning: 

 Seismic data – USGS Earthquake Hazards Program, Japan Meteorological Agency, 

Indian National Centre for Seismology. 

 Geospatial layers – fault lines, liquefaction susceptibility, slope gradient, and soil 

classification maps. 

 Remote sensing imagery – Sentinel-1 SAR for surface deformation and Sentinel-2 

optical data for land use and land cover classification. 

 Socio-economic indicators – population distribution (WorldPop), building footprints 

(OpenStreetMap), hospital and shelter locations [18]. 

All datasets were harmonized into a consistent spatial reference system (WGS 84 / UTM) and 

temporally aligned with historical earthquake events. 

3.4 AI Model Architecture for Predictive Hazard Mapping 

The hazard prediction process included: 

1. Data Preprocessing – filtering noise from seismic records, normalizing attributes, 

and resampling raster layers to a common resolution. 

2. Feature Engineering – integrating geological, seismic, and socio-economic attributes 

into composite feature sets [19]. 

3. Model Development – testing Random Forest (RF), Gradient Boosting Machines 

(GBM), and Convolutional Neural Networks (CNN) for spatial hazard classification. 

4. Model Evaluation – applying k-fold cross-validation (k=10) with stratified sampling 

to balance hazard class representation [20]. 

Table 2: AI Model Parameters 

Model Key Parameters Feature Input Type Output Evaluation 

Metrics 

RF 500 trees, max 

depth=20 

Tabular geospatial 

attributes 

Hazard zone 

class 

Accuracy, F1-

score 

GBM Learning rate=0.1, 150 

trees 

Tabular + engineered 

features 

Impact 

probability 

ROC-AUC, 

Log-loss 

CNN 3 conv layers, ReLU 

activation 

Raster imagery Hazard 

heatmap 

IoU, Precision 
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3.5 Operations Research Optimization Framework 

The OR component addresses post-event emergency response optimization using a Mixed-

Integer Linear Programming (MILP) approach without the mathematical formulation for 

clarity. The model determines: 

 Optimal allocation of rescue teams and medical units. 

 Strategic placement of emergency shelters and supply points. 

 Prioritization of transportation routes to minimize travel times. 

Inputs include AI-generated hazard heatmaps, population exposure maps, and available 

logistics resources. Constraints incorporate road network capacity, depot storage limits, and 

maximum allowable response times [21]. 

Table 3: Optimization Model Inputs 

Parameter Description Source 

Travel cost Time or distance between depot & zone Road network GIS 

Demand Resources needed in each impact zone AI hazard output + census data 

Capacity Maximum supply or personnel per depot Logistics inventory database 

 

3.6 Remote Sensing Data Preprocessing 

 Sentinel-1 SAR – processed using interferometric techniques (InSAR) to detect pre- 

and post-event surface displacement. 

 Sentinel-2 Optical Imagery – classified for land use and urban density to assess 

potential infrastructure vulnerability [22]. 

 Cloud masking & atmospheric correction – applied using Sen2Cor and SNAP 

toolboxes to ensure spectral consistency. 

3.7 Spatial Analysis and Hazard Mapping 

Hazard predictions from AI models were integrated into a GIS environment for spatial 

interpolation and hotspot detection. Kriging interpolation in ArcGIS and Google Earth Engine 

(GEE) was used to visualize impact probability zones. The resulting maps were validated 

against historical damage records and field reports [23]. 

3.8 Data Validation and Quality Assurance 

 All preprocessing and modeling steps were performed in triplicate to ensure 

reproducibility. 

 Cross-validation was conducted using both historical seismic events and synthetic test 

scenarios. 

 Independent verification was performed with datasets from events not included in 

training. 

3.9 Limitations and Assumptions 

 AI models predict probable impact zones, not exact event timing. 

 OR optimization assumes road network availability post-event, which may not hold 

for severe infrastructure damage. 

 Remote sensing imagery resolution limits may affect accuracy in densely built urban 

areas. 

 

IV. RESULT AND ANALYSIS 

4.1 Overview of Predicted Earthquake Impact Zones 

The AI-driven predictive framework generated hazard probability maps for each study region, 

classifying zones into high, moderate, and low impact categories. Across all three study 

areas, high impact zones were primarily concentrated along major fault lines and in densely 

populated urban corridors. 
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Figure 1: Steps of using Predictive AI [24] 

In the Himalayan Frontal Thrust, the model predicted high-impact probabilities in districts 

with historical records of severe shaking, particularly in areas with low-code rural structures. 

In the Nankai Trough, the high-risk areas included coastal cities with combined earthquake 

and tsunami vulnerability. The San Andreas Fault outputs indicated elevated risk in 

segments near urbanized regions with critical infrastructure, such as power plants and 

transportation hubs. 

Table 4: Predicted Hazard Class Distribution 

Region High Impact (%) Moderate Impact (%) Low Impact (%) 

Himalayan Frontal Thrust 38.2 44.6 17.2 

Nankai Trough 35.7 48.9 15.4 

San Andreas Fault 33.1 50.2 16.7 

4.2 Model Performance Evaluation 

Performance metrics were computed using held-out validation datasets. The CNN model 

achieved the highest Intersection over Union (IoU) scores for spatial prediction accuracy, 

while the Gradient Boosting Machine provided the most reliable probabilistic outputs. 

Table 5: Model Evaluation Metrics 

Model Accuracy (%) F1-Score ROC-AUC IoU 

RF 88.3 0.85 0.91 0.72 

GBM 90.7 0.88 0.94 0.76 

CNN 92.4 0.90 0.95 0.81 

4.3 Hazard and Population Exposure Correlation 

Overlaying hazard probability maps with population density layers revealed significant 

exposure patterns. In the Himalayan region, approximately 6.4 million people were located 

in predicted high-impact zones. In the Nankai Trough, 5.1 million residents were within 

high-risk coastal belts, while in California, nearly 4.7 million people were in elevated hazard 

areas. 

Table 6: Population Exposure Estimates 

Region Population in High Impact 

Zones 

Percentage of Regional 

Population 

Himalayan Frontal 

Thrust 

6,420,000 28.5% 

Nankai Trough 5,150,000 31.7% 

San Andreas Fault 4,720,000 25.2% 

4.4 OR-Based Emergency Response Optimization Results 

The operations research optimization framework was applied to simulated post-event 

scenarios to determine the most efficient allocation of rescue units, medical teams, and relief 

supplies. 



LEX LOCALIS-JOURNAL OF LOCAL SELF-GOVERNMENT 

ISSN:1581-5374 E-ISSN:1855-363X  

VOL. 23, NO. S2(2025)                 

 

 

207 
 

The optimized allocation plans demonstrated a reduction in average response times by 18–

26% compared to baseline distribution strategies. This improvement was most significant in 

rural and mountainous zones of the Himalayan region, where pre-positioning of supplies 

reduced travel times by over 40 minutes. 

Table 7: Response Time Reduction by Region 

Region Baseline Avg. 

Response Time (hrs) 

Optimized Avg. 

Response Time (hrs) 

Improvement 

(%) 

Himalayan Frontal 

Thrust 

3.8 2.8 26.3 

Nankai Trough 2.5 2.0 20.0 

San Andreas Fault 2.1 1.7 19.0 

4.5 Spatial Hotspot Detection 

Kriging-based spatial interpolation of predicted high-impact zones revealed distinct hotspot 

clusters. In the Himalayan region, these clusters aligned with areas of steep terrain and high 

building vulnerability. In the Nankai Trough, the majority of hotspots overlapped with coastal 

urban belts, while in California, they were concentrated near major metropolitan fault 

intersections. 

 

Table 8: Identified Hotspot Areas and Key Risk Drivers 

Region Hotspot Area (km²) Key Risk Drivers 

Himalayan Frontal Thrust 1,240 Fault proximity, poor construction quality 

Nankai Trough 980 Coastal density, tsunami exposure 

San Andreas Fault 1,050 Urban density, infrastructure clustering 

4.6 Discussion of Key Findings 

The results show that integrating AI-driven hazard prediction with OR-based resource 

optimization produces a comprehensive decision-support framework. The AI component 

offers accurate hazard mapping, while the OR component ensures that emergency resources 

are deployed in a time-efficient manner. 

 
Figure 2: Predictive AI: Forecasting [25] 

Key findings include: 

 CNN models are most effective for fine-scale spatial prediction. 

 High population densities in hazard zones highlight the need for targeted evacuation 

planning. 

 Optimization significantly reduces emergency response times, especially in regions 

with poor baseline accessibility. 

 Hotspot detection aligns closely with historical damage data, validating the predictive 

model’s spatial accuracy. 

 

V. CONCLUSION 

In this research, a synergistic and seamless structure of emergency response optimisation 

based on operations research and AI-driven predictive modelling of earthquake impact zones 

was introduced. Combining both efficient machine learning algorithms and structured 
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optimization strategies, the framework tackles elements of pre-event hazard analysis and 

post-event operational planning to form a single and applicable method of seismic risk 

management. The predictive modeling module used various data inputs, seismic catalogs, 

geological information on faults lines, susceptibility maps of soils and social vulnerability 

indicators to produce maps of the high-resolution hazard probabilities. The testing of the 

Random Forest, Gradient Boosting Machine, and Convolutional Neural Network 

architectures performed on comparative case basis saw that the CNN was always ahead in the 

spatial prediction performance, especially within the region of detecting finer scale patterns 

of the hazards in the area where spatial relationships play a key role. Three regions of the 

case study- Himalayan Frontal Thrust, Nankai trough, and San Andreas fault results were 

compared to those of the historical records of damage and indicated that the model worked 

and both highly impacted areas were properly identified and the predictions close to the 

records. The region of Himalaya registered the maximum exposure of the people particularly 

in predictable high-risk areas, highlighting the synergetic precariousness of the vulnerability 

because of both geological effect and weak infrastructures. The model incorporated 

population and infrastructure data in hazard mapping and thus the risk assessment focused on 

the physical hazard and the human and socio-economic ramifications of the earthquake. The 

predictive modeling was supplemented by operations research element that ensures efficient 

allocation of the emergency response resources using a mixed-integer linear programming 

methodology. The simulations showed that the average response times of emergency 

situations were significantly lower than the baseline allocation strategies with the greatest 

improvements most evident in the elongated areas with rough terrains and poor access to 

infrastructure. Such findings show the logistics benefit of having pre-positioned resources 

based on predictive hazard products so that resource mobilization during those of greatest 

need (the first few hours) can be executed efficiently.  Hotspot mapping was also done on 

spatial data where detected clusters were found to be in areas with seismic history, wide 

concentration of buildings, and not a strong building structure. This kind of hotspot 

identification can be used to raise specific areas of infrastructure strengthening, designing 

evacuation strategy and prioritizing the strategies of public awareness in the areas at highest 

risk. The framework, consequently, does not only assist in correct hazard detection but also 

directly contributes to strategic planning of emergency interventions. Policy- and planning-

wise, having combined AI-based hazard modeling and OR-based resource allocation presents 

a revolutionary step towards an adaptive, data driven system of dealing with disasters. The 

approach shifts hazard maps past the level of static planning by making them updateable in 

near real-time and connectable to the optimized emergency deployment strategies. The 

methodology can be applied in different seismic settings, as well, due to the flexibility of its 

approach: with locally-available data, the model can be retrained and calibrated to operate in 

the new environment. Moreover, the ability to inject the data about remote sensing in the 

process implies that hazard estimates can be promptly updated after the seismic disaster, 

which contributes to better situation awareness and enhances the accuracy of decisions made. 

Although the framework gives coherent gains, there are limitations associated with it. The 

forecast models do not aim to predict the actual times of seismic events but to determine 

probable event zones, in this regard, risk mitigation, and not event prediction, is what the 

framework offers. The assumption may not be true in cases of the severe collapse of 

infrastructure as the optimization models presume a level of functionality of the network of 

transportation after the event. Also, the credibility of the threat maps identified lies on the 

level and availability of the input data, so that data-scarce areas would necessitate additional 

field surveys and remote sensing measurements to boost the integrity of the models by 
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maximizing the predictive accuracy. Going forward, there is potential to extend this work to 

include real-time seismic sensor information feeds and near real-time SAR imagery to 

continuously update hazard maps, multi-hazard interaction model to deal with cascading 

disasters, and interactive platforms where the decision-maker can test different emergency 

response plans before a response is implemented. The results of the presented study reveal 

that the combination of AI-enabled prediction of hazards and operations research-enabled 

optimization of emergency operations result into not only the technically potent but an 

exceedingly practical method of earthquake preparedness. The four approaches together 

address the disconnect between predictive hazard and the robust approach to response by 

providing a potential means of vastly increasing the efficiency with which emergency costs 

are grounded and the resilience of the regions exposed to earthquakes. 
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