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Abstract 

In modern oncology, data complexity can challenge physicians in selecting optimal treatment paths. This study 

introduces a fuzzy logic-based decision support system that evaluates three variables—race, age, and tumor 

size—to recommend preferred treatment options for breast cancer. Leveraging fuzzy logic enables nuanced 

clinical assessments beyond binary reasoning, thus reducing decision-making time and minimizing potential 

errors. Results highlight fuzzy logic's capability to mirror human decision-making in oncology and offer a 

scalable method for personalized treatment optimization. 
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1. Introduction 
Breast cancer continues to be one of the most prevalent malignancies affecting women 

worldwide. According to the National Breast Cancer Foundation, approximately 1 in 8 

women in the United States are expected to be diagnosed during their lifetime. Despite 

significant strides in oncology, physicians are often inundated with complex and 

heterogeneous data, which can delay diagnosis and compromise treatment precision. 

 

Traditional decision-making in medicine often relies on binary classifications, simplifying 

outcomes into discrete categories like "true" or "false." While effective in some contexts, this 

rigid structure can overlook nuanced clinical realities (Ross, 2009). However, this rigid 

structure fails to capture the continuum of clinical variation encountered in real-world cases. 

Herein lies the value of Fuzzy logic, initially conceptualized by Zadeh (1965), offers a 

flexible reasoning structure that operates beyond the constraints of binary logic—

accommodating shades of truth and enhancing interpretability in uncertain environments. 

(Zadeh, 1965; Garrido, 2012). 

 

Unlike probabilistic models that focus on likelihoods, fuzzy logic represents graded truths—

making it especially applicable to clinical scenarios where patients may not fit neatly into 

predefined categories. 

 

Moreover, fuzzy logic parallels the human thought process by integrating vague or 

incomplete information and yielding decisions based on a range of inputs. Its utility spans 

several AI subfields, including neural networks, expert systems, and adaptive algorithms. In 

healthcare, fuzzy logic’s ability to synthesize multifactorial inputs—such as demographics, 

pathology, and physiology—makes it a promising tool for optimizing treatment 

recommendations and supporting personalized medicine. 
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This paper presents a fuzzy logic framework that incorporates three clinically relevant 

variables—race, age, and tumor size—to generate treatment decisions for breast cancer 

patients. These parameters were selected based on established literature highlighting their 

influence on disease progression and therapeutic outcomes. The proposed system aims to 

reduce diagnostic latency and enhance therapeutic precision, ultimately improving patient 

care. 

 

2. Data Source and Pre-processing 
The data for this research was obtained from the SEER-Medicare database, a linkage between 

the National Cancer Institute’s SEER (Surveillance, Epidemiology, and End Results) cancer 

registries and U.S. Medicare claims for individuals aged 65 years and older. The SEER 

program—established by the National Cancer Institute—has progressively expanded its 

coverage over time, evolving from an initial cohort of 9 registries in 1973 to 21 registries by 

2018, thereby encompassing approximately 35% of the U.S. population (National Cancer 

Institute, 2021; Andersonet al., 2009; Quinlan et al., 2010). 

 

The breast cancer dataset considered in this study has many variables. In this work we have 

identified key variables of interest for our work including variables such as race, age (in 

years), and tumor size (in millimeters). The dataset was reviewed for consistency, missing 

values, and input normalization. Each variable was encoded into discrete categories for ease 

of integration with fuzzy logic rules. 

 

3. Fuzzy System Design 
3.1 System Development Using MATLAB 

The fuzzy logic model was developed using MATLAB and its dedicated Fuzzy Logic 

Toolbox. The fuzzy logic system follows a Mamdani-type inference structure, known for 

interpretability and user-friendly rule definition (Mamdani and Assilian, 1975). For 

convenience, the inputs and outputs have been renamed as well as the entire system has been 

exported to file and remained as well. The system construction followed a four-step 

workflow: 

3.2 Defining Inputs and Output Variables 

The system comprises three input variables: 

 Race: Categorized into three membership functions—White, African American, and Other. 

 Age: Divided into seven overlapping brackets (e.g., 25–34, 35–44, ..., 75–84) to reflect 

nonlinear age-related risk. 

 Tumor Size: Segmented into five fuzzy ranges—Small, Medium, Large, Very Large, and 

Enormous. 

 

The output variable, Treatment Recommendation, includes four discrete fuzzy sets (Figure 1): 

 No Treatment 

 Surgery 

 Chemotherapy 

 Combination of Surgery and Chemotherapy 
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Figure 1: Fuzzy Logic Implementation FLow 

 

3.3 Designing Membership Function 

Membership functions (MFs) were configured using the triangular shape due to their 

simplicity and interpretability (Ross, 2009). Comparative testing with Gaussian and 

trapezoidal MFs revealed that triangular functions provided clearer boundary definitions and 

faster simulation times for this dataset. Parameters such as range, shape, and linguistic labels 

were customized per input type. 

 

3.4 Defining Rules 

We have incorporated 25 IF–THEN rules, hand-crafted based on domain expertise and 

epidemiological insights (Figure 2). Rules integrate combinations of Race, Age, and Tumor 

Size to generate treatment outputs. 

 

For example: 

 IF Race is African American AND Age is 65–74 AND Tumor Size is Large THEN 

Treatment is Chemotherapy. 

 IF Race is Other AND Age is 35–44 AND Tumor Size is Small THEN Treatment is 

Surgery. 

These rules mirror clinical judgment and are designed to simulate partial truth inference, 

enabling the model to generate decisions that reflect realistic clinical complexity. 

 

 

Figure 2: Excerpt of Fuzzy Rules implemented 

 

3.5 System Simulation and Deployment 

Using MATLAB's Rule Viewer, researchers could interactively modify input variables and 

observe the corresponding outputs. The final fuzzy inference system was exported to the 
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MATLAB workspace for further analysis. Scenarios were tested by varying input parameters 

to evaluate system responsiveness and decision consistency. 

 

A modular framework allows practitioners to fine-tune parameters or integrate additional 

input variables (e.g., hormone receptor status or genetic markers) in future iterations. 

 

4. Results and Analysis 
The fuzzy logic decision system successfully modeled treatment recommendations for breast 

cancer patients based on three key inputs: race, age, and tumor size. Each of these inputs was 

encoded into structured membership functions, and their interactions were governed by an 

expert-driven rule base. 

 

Socioeconomic and cultural factors also played a role in cancer risk stratification, justifying 

inclusion of race. For lung cancer, African-American males have both the highest incidence 

and death rates, while Hispanic females have the lowest incidence and death rates (American 

Cancer Society, 2020). Prostate cancer epidemiology reveals notable racial disparities, with 

African-American men experiencing the highest incidence and mortality rates, whereas Asian 

and American Indian subgroups report comparatively lower figures (Sewitch et al., 2019; 

American Cancer Society, 2020). For breast cancer among women, White non-Hispanic 

women have the highest incidence rate, while Korean American women have the lowest. 

African-American women have the highest death rate from breast cancer, whereas Chinese 

American women have the lowest (American Cancer Society, 2021). These statistics 

highlight the importance of addressing racial and ethnic disparities in cancer prevention, 

diagnosis, and treatment. 

 

Age is often used as a surrogate marker for the complex biological processes linked to aging 

(Jones & Smith, 2018; Mudunuru, 2016). However, it is important to distinguish between the 

natural aging process and age-related diseases. Interestingly, individuals who live longer and 

experience greater longevity often have a lower risk of developing cancer, highlighting the 

complex relationship between aging and disease susceptibility. Age, being a well-known 

epidemiological factor, shaped treatment preferences due to varying biological and exposure 

risks (White et al., 2014). The system is modular and adaptable for future refinement. 

 

5. Simulation Outcomes 
Using MATLAB’s Rule Viewer, a wide range of hypothetical patient profiles were evaluated 

across variable combinations. Results demonstrated the system’s capacity to make nuanced 

treatment suggestions rather than binary decisions. Representative findings include: 

 Patients aged 55–64 with medium-sized tumors and African American background were 

frequently recommended chemotherapy due to elevated metastasis risk and socioeconomic 

factors associated with treatment access. 

 Younger patients (25–34) with small tumor size, regardless of race, were commonly 

assigned surgical treatment, aligning with prevailing clinical practice for early-stage 

diagnoses. 

 Large or enormous tumor sizes, especially in older patients (65+), triggered the system to 

recommend combination therapies, indicating elevated clinical urgency and the need for 

multimodal intervention. 

 

5.1 Membership Function Effectiveness 
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In designing fuzzy inference systems for medical decision support, selecting an appropriate 

membership function (MF) type is crucial for balancing interpretability, computational 

efficiency, and alignment with the underlying data. Triangular MFs are widely preferred in 

clinical modeling due to their high interpretability and fast processing speed. Their simple 

linear structure allows for intuitive rule visualization, making them especially suitable for 

systems aimed at simulating human decision-making under uncertainty (Ross, 2009). In 

contrast, Gaussian MFs—despite offering smooth transitions—are computationally more 

intensive and moderately aligned with clinical datasets, which often contain discrete variable 

groupings. Trapezoidal MFs provide a compromise with faster execution and reasonably 

understandable shapes, though their moderate alignment with complex biomedical data can 

limit precision. Empirical comparisons in this study affirmed triangular MFs as optimal, 

echoing broader applications where clarity and responsiveness are prioritized (Jang et al., 

1997). 

 

Triangular membership functions proved effective in representing input ranges and enhancing 

interpretability. Triangular shapes offered a clear visualization of risk gradients, especially for 

tumor size and age brackets. 

 

5.2 Input Sensitivity Analysis 

A qualitative assessment revealed that: 

 Tumor Size exhibited the strongest influence on treatment outcome—accounting for 

approximately 60% of decision variation. 

 Age contributed roughly 30%, capturing cancer incidence dynamics and therapeutic 

tolerance. 

 Race influenced 10%, reflecting disparities in access, screening behavior, and cultural 

considerations. While its impact was lower compared to biological factors, its inclusion 

enhanced contextual relevance. 

 

5.3 Robustness and Scalability 

The fuzzy system’s rules were stress-tested across edge cases and borderline profiles. The 

framework responded with consistent decisions and avoided erratic outputs. Moreover, the 

modular architecture supports integration of additional input variables (e.g., receptor status, 

comorbidities), enabling broader scalability for future clinical use. 

 

6. Discussion 
Fuzzy logic introduces flexibility in medical decision-making, allowing physicians to 

consider multiple partial truths simultaneously (Edge et al., 2010). Compared to rigid rule-

based algorithms, fuzzy systems better mirror clinical uncertainty and nuance. The triangular 

MF implementation yielded balanced inference outcomes, demonstrating superior 

performance in low-resolution, rule-heavy systems. The rule set captured nuanced patterns 

otherwise lost in purely algorithmic approaches. Though effective, this prototype warrants 

validation using real-world datasets and physician feedback. Future iterations may 

incorporate additional variables (e.g., genetic markers, hormone receptor status) or hybrid 

models combining fuzzy logic with machine learning classifiers. 

 

7. Conclusion 
This study establishes a solid foundation for integrating fuzzy systems into real-world clinical 

decision support platforms. Future directions include: 
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 Integration with machine learning models: Hybrid systems combining fuzzy logic with 

decision trees or Bayesian networks (e.g., Fuzzy-Bayes classifier) may yield higher 

predictive accuracy. 

 Real-world dataset validation: Apply the system to breast cancer registries with outcomes 

data to test clinical relevance. 

 Dynamic rule generation: Use reinforcement learning or genetic algorithms to auto-

generate and optimize fuzzy rules. 

 Expansion to multi-modal diagnostics: Incorporate imaging biomarkers, genomic data, and 

hormone receptor status for holistic decision support. 

The fuzzy framework also holds potential for broader applications such as drug regimen 

personalization, side effect prediction, and long-term survivability modeling. 

 

Unlike binary systems that echo Shakespeare’s "to be or not to be", fuzzy logic embraces the 

continuum of reality. This study affirms its utility in oncology, enabling decision support 

systems that are both intuitive and mathematically robust. As healthcare evolves, fuzzy logic-

based solutions may accelerate personalized medicine, reduce diagnostic errors, and improve 

remission outcomes. 
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