

The Role of Renewable Energy in Achieving Sustainable Development: A Conceptual Study

Dr BELAID Mounira

University of Constantine3

mounira.belaid@univ-constantine3.dz

Received: 10/03/2025

Accepted: 17/06/2025

Published: 21/10/2025

Abstract:

The motivation behind this research on renewable energy and its role in sustainable development arises from the growing demand for energy and the heavy dependence on finite fossil fuel resources. These resources are threatened by depletion and have not fostered sustainable development due to their harmful emissions and inherent unsustainability. This has driven the search for renewable energy sources, such as solar, wind, and tidal energy, with the objective of achieving sustainable development that integrates economic, social, environmental, and political dimensions.

This study aims to explore the impact of renewable energy on sustainable development and to raise awareness of the need to conserve conventional energy sources, thereby enabling future generations to benefit from them. Additionally, it seeks to establish robust strategies for transitioning to renewable energy-based economies, to promote investment in this sector, and to drive research and development in renewable energy. Emphasis is placed on the significant environmental risks that humanity faces, as well as the potential global crisis that may arise if dependency on fossil fuels continues without the development of alternative energy sources.

The importance of this study lies in highlighting the role of renewable energy in achieving sustainable development without environmental harm. Furthermore, it underscores the need to incentivize investments in renewable energy in light of ongoing environmental changes and challenges. The study also aims to alert investors in non-renewable energy to the impending risks associated with fossil fuel depletion.

Keywords: renewable energy, sustainable development, environmental pollution, climate change, energy security.

Introduction:

Heavy reliance on fossil fuels in development processes has significantly increased environmental pollution levels, as the global economy remains largely dependent on these fuels. This dependency has created a pressing need to explore renewable energy resources, which offer two key advantages: energy sustainability and pollution reduction, while also alleviating pressure on traditional energy sources. Consequently, renewable energy has emerged as a pivotal future energy source, characterized by its clean, non-polluting nature and automatic renewability, making it a central contributor to sustainable development.

The rising demand for petroleum and other fossil fuels has led to an increase in emissions that drive global warming, threatening an uncontrollable climate shift. These emissions, primarily carbon dioxide, trap incoming heat from the sun, resulting in substantial changes to Earth's temperature. This phenomenon also poses risks to global food security and contributes to the scarcity of freshwater, a problem of growing global concern.

In response to these conditions, countries worldwide have intensified their focus on renewable energy as a viable alternative to fossil fuels for the future. Advanced nations, in particular, are aiming to reduce fossil fuel dependency. Since the early 1990s, the renewable energy sector has undergone substantial transformation, aiming to mitigate environmental pollution, address food security threats, and achieve global energy security.

Accordingly, the research problem is framed around answering the following question:

What role can renewable energy play in achieving sustainable development?

This study aims to test the following hypothesis:

The use of renewable energy contributes to addressing environmental pollution, mitigating the impacts of climate change, and enhancing global energy security, thereby supporting sustainable development.

This research will be structured around the following key areas:

1. Renewable Energy: A Conceptual Approach
2. The Nature of Sustainable Development
3. The Role of Renewable Energy in Achieving Sustainable Development

1. Renewable Energy: A Conceptual Approach

1. Definition of Renewable Energy:

The term “traditional energy” refers to energy sources that have historically met most of the energy needs of industrialized Western societies, such as coal, petroleum, and natural gas. These traditional energy sources are considered finite resources, meaning they are naturally limited in supply or deplete in a given area as they are extracted or continually consumed.

In contrast, renewable energy is derived from natural resources that replenish, meaning they do not run out. Unlike fossil fuels, such as petroleum, coal, and natural gas, renewable energy sources are distinctively inexhaustible. Therefore, renewable energy can be defined as:

- Resources obtained from energy sources that reoccur naturally and periodically in the environment.
- These sources are inherently sustainable, consistently available in nature (whether in limited or abundant amounts), and renew continually. Additionally, they are relatively clean and produce minimal environmental pollution¹.

Below are definitions of renewable energy from various international organizations:

- **International Energy Agency (IEA):**

"Renewable energy consists of energy sources generated by natural processes, such as sunlight and wind, which are naturally replenished at a faster rate than their consumption.²"

- **Intergovernmental Panel on Climate Change (IPCC):**

"Renewable energy encompasses all energy derived from solar, geophysical, or biological sources that renew naturally at a rate equal to or faster than their use. It is produced from continuous natural flows, such as biomass, solar energy, geothermal energy, hydropower, ocean tides, and wind energy. Various mechanisms can convert these sources into primary forms of energy, including heat, hydropower, and kinetic energy, using multiple technologies to provide energy services like fuel and electricity."³

- **United Nations Environment Programme (UNEP):**

"Renewable energy refers to energy sources that are not derived from fixed, limited reserves in nature but instead renew periodically at a rate faster than their consumption. These sources include biomass, solar radiation, wind, hydropower, and geothermal energy."⁴

2. Types and Sources of Renewable Energy:

Renewable energy sources are sustainable, inexhaustible natural resources, available in nature whether limited or abundant, but constantly replenishing. They are environmentally clean, producing little to no pollution. Key sources of renewable energy include:

A. Solar Energy

Solar energy is a primary source of thermal energy that can be converted into electricity. Solar power is utilized in power generation stations to create steam that drives turbines for electricity generation. Common applications include solar water heaters for homes, replacing gas-powered water heaters.⁵

There are primary techniques for harnessing solar energy:⁶

- **Photovoltaic Cells (Solar Photovoltaics):** This technology converts sunlight directly into electricity. Photovoltaic cells are often made of silicon and other semiconductor materials, function by absorbing photons from sunlight, which then generate electricity through the photovoltaic effect. These cells contain no moving parts and provide a direct electricity generation mechanism.

- Concentrated Solar Power (CSP): CSP systems use solar thermal technology to capture and concentrate sunlight to generate heat, which then drives steam turbines to produce electricity indirectly. This can involve basic setups with flat solar panels aimed at sunlight or larger solar concentration systems that capture heat, producing steam that powers turbines.

A newer innovation is solar cooling technology, which uses solar power for cooling processes. This technique involves capturing solar energy on specialized panels, converting it into electricity for cooling applications, as well as for heating and various other purposes.

B. Water Energy

There are multiple ways to harness energy from water, including:

- Hydroelectric Energy: Generated through the gravitational force of falling water, hydroelectric power is one of the most widely used forms of renewable energy for electricity generation. The kinetic energy from flowing water directly powers turbines, eliminating the need for steam.
- Wave Power: Known as wave energy, this harnesses the kinetic force of ocean waves to generate mechanical energy, which can then be converted to electricity, desalinate seawater, or pump water into reservoirs.
- Tidal Power: This is energy derived from the natural tidal movements caused by gravitational interactions between the Earth and the Moon. Tidal power plants exploit the difference in sea levels during tidal shifts to generate energy.
- Thermal Gradient Energy: Using the temperature difference between warm surface water and cooler deep water, thermal gradient energy generation can be achieved when the temperature difference reaches approximately 10 degrees Celsius.⁷

C. Wind Energy

Wind energy captures the kinetic energy of wind to generate electricity. Typically, wind energy relies on wind turbines, which use the motion of wind-driven blades to generate power. These turbines, or windmills, are also used in various applications such as water pumping, irrigation, and heating.

D. Biomass Energy

Biomass energy is produced from organic waste materials, including animal and agricultural waste, often termed "biofuel technology." Biomass energy generation methods include:

- Direct or indirect combustion.
- Anaerobic digestion (fermentation without oxygen).
- Distillation processes.
- Production of chemical fertilizers from organic matter.

E. Geothermal Energy

The Earth's internal heat offers a valuable source of geothermal energy, particularly when utilizing high-temperature underground water sources for power generation. There are three main uses for geothermal heat⁸:

- Direct Use: Utilizing heat from reservoirs close to the Earth's surface.

- Deep Reservoirs: Tapping into reservoirs 2-4 kilometres deep to access hot water for electricity generation.
- Building Heating: Using heat pumps that leverage warmth from rocks or water sources near the Earth's surface to heat buildings.

F. Nuclear Energy

Nuclear energy is generated by controlling nuclear fission or fusion reactions. Nuclear power plants use this energy to heat water, producing steam that drives turbines for electricity generation.

Nuclear energy derives from the nucleus of atoms, composed of protons and neutrons, and is produced through two primary processes: fission (splitting atomic nuclei) or fusion (merging nuclei).⁹

Although nuclear technology is complex, the energy density from nuclear reactions is significantly higher than that of fossil fuels.

3. Advantages of Renewable Energy:

Renewable energy offers numerous positive impacts, including:¹⁰

- Job Creation and Economic Growth: Increased investment in the renewable energy sector generates millions of job opportunities and boosts global income.
- Sustainable Poverty Reduction in Key Sectors: By supporting eco-friendly agricultural practices, renewable energy helps sustain soil fertility and conserve freshwater resources, reducing poverty in critical sectors like agriculture, water, and energy.
- Reduction of Environmentally Harmful Subsidies: Market-based incentives and regulatory adjustments help reduce harmful subsidies, encouraging environmentally sustainable practices.
- Risk Mitigation: Renewable energy minimizes several negative impacts, such as climate change effects and increasing water scarcity.
- Reduction of Greenhouse Gas Emissions: By shifting to cleaner energy sources, renewable energy significantly lowers greenhouse gas emissions, contributing to climate stability.
- Meeting Energy Demand: As a perpetual and inexhaustible resource, renewable energy has the potential to supply six times the world's current energy needs, thanks to its ties to constant sources like the sun and wind.
- Reduction of Environmental Pollution: Most renewable energy sources are environmentally clean, which means fewer costs related to mitigating the harmful effects of traditional energy sources.
- Direct Energy Production: Technologies like solar cells directly produce electricity, minimizing the need for multiple energy conversion processes and reducing overall production costs.
- Economic Return and Cost Efficiency: Technological advancements in renewable energy lower production costs, enhancing economic returns.
- Improved Energy Access in Remote Areas: Renewable energy, such as solar power, makes it easier to meet the energy needs of remote and low-consumption regions, supporting local activities like agriculture, cooking, and water heating.

- Increased National Energy Independence: By relying more on local resources, countries can reduce pressure on traditional global energy markets, creating new job opportunities and increasing income levels.

4. Importance of Developing and Utilizing Renewable Energy:

Countries worldwide are increasingly motivated to develop and utilize renewable energy, driven by several key factors:¹¹

A. Global Energy Security:

The ever-growing demand for traditional energy sources, particularly petroleum, by industrial nations is one of the most significant challenges facing the global economy. Energy production remains concentrated in the Middle East, a region prone to conflict, which directly threatens global energy security and highlights the need for reliable, alternative energy sources.

B. Concerns over Climate Change:

Renewable energy sources fulfil global energy needs in a way that aligns with climate change mitigation efforts. By replacing fossil fuels, renewables significantly reduce greenhouse gas emissions, playing a critical role in addressing global warming.

C. Declining Cost of Renewable Energy:

Technological advancements have led to a decrease in the cost of renewable energy, providing a strong incentive for countries to replace traditional energy sources with more affordable, s

2. The Nature of Sustainable Development:

1. Definition of Sustainable Development:

The term “sustainable development” originated in a 1980 publication by the International Union for Conservation of Nature (IUCN). However, it did not gain widespread recognition until it was reintroduced in the 1987 report Our Common Future, published by the United Nations World Commission on Environment and Development. This report defines sustainable development as "development that meets the needs of the present without compromising the ability of future generations to meet their own needs." This definition implicitly focuses on two central ideas:

- Needs, particularly the essential needs of the poorest and most vulnerable social groups, which deserve priority attention.
- Environmental limitations, acknowledging the finite capacity of the environment to meet both present and future human needs, considering the prevailing production and consumption patterns and the available technologies.¹²

In a significant development, the United Nations expanded on this concept by establishing the Sustainable Development Goals (SDGs), a set of 17 clearly defined objectives that clarify and standardize the development agenda. These goals build upon the successes of the Millennium Development Goals (2000-2015). This expansion redefined the concept of development to encompass economic, social, and political dimensions, addressing the root causes of poverty and recognizing the universal need for inclusive development. The 17 SDGs and 169 associated

targets go beyond the Millennium Development Goals, which were primarily aimed at developing countries, by applying universally to all countries and tackling sustainable development's three main dimensions: economic, social, and environmental protection.

2. Sustainable Development Goals (SDGs):

On September 25, 2015, the United Nations formalized efforts toward sustainable development by creating 17 goals, collectively forming the 2030 Agenda for Sustainable Development. The SDGs serve as a universal call to action and a framework for coordinating efforts worldwide to eliminate poverty, eradicate hunger, ensure inclusive education, achieve gender equality, empower women, promote good health and well-being, and foster prosperity for all, among other objectives. Climate change, and efforts to combat its effects, also became a core focus, recognized as a critical global SDG target from 2015 to 2030.

These 17 goals build on the successes of the Millennium Development Goals (MDGs, 2000-2015), while also addressing emerging areas like climate change, economic inequality, innovation, sustainable consumption, peace, and justice, among other priorities. A substantial part of the progress made through the MDGs informed the SDGs, as detailed in the United Nations' 2015 Millennium Development Goals Report.¹³

The interconnected nature of the SDGs is evident; achieving one goal often depends on addressing issues tied to other goals. For instance, addressing poverty is intertwined with progress in education, healthcare, gender equality, and empowerment.

The SDGs' overarching objectives include:

- **Eradicating Poverty:** Inclusive economic growth must create sustainable jobs and promote equality. Currently, over 700 million people (around 10% of the global population) live in extreme poverty, struggling to meet basic needs like healthcare, education, access to water, and sanitation.
- **Ending Hunger:** An estimated 690 million people, or 8.9% of the world's population, suffer from hunger—a number that has increased by 10 million in just one year and by 60 million over the past five years. With more than a quarter billion people at risk of famine, urgent actions are needed to ensure food security and provide humanitarian aid to vulnerable areas. Sustainable food production is crucial for reducing hunger.
- **Good Health and Well-being:** Ensuring healthy lives and promoting well-being for people of all ages is essential for sustainable development. Currently, global health crises cause human suffering, destabilize economies, and disrupt the lives of billions. Increased efforts are needed to eliminate a wide range of diseases and address ongoing and emerging health issues by providing more efficient healthcare funding, improving sanitation, and increasing access to medical professionals.
- **Quality Education:** Education enables social and economic mobility and is key to escaping poverty. Accessible, quality education empowers individuals and transforms communities.
- **Gender Equality:** Gender equality is a fundamental human right and a cornerstone for peaceful, prosperous, and sustainable societies.
- **Clean Water and Sanitation:** Billions, mostly in rural areas, lack access to basic clean water and sanitation services. Globally, one in three people does not have access to safe

drinking water, and two out of five people lack basic facilities to wash their hands with soap and water.

- Affordable and Clean Energy: Greater emphasis is needed to expand renewable energy use beyond the electricity sector, particularly to increase access to electricity in Sub-Saharan Africa.¹⁴

3. Indicators of Sustainable Development:

In pursuit of sustainable development goals, economists employ various indicators to assess countries and institutions progress toward achieving these goals. These indicators assist policymakers in decision-making processes, serving as benchmarks for tracking achievements and highlighting gaps in reaching target outcomes. Effective indicators identify potential issues before they arise. Key indicators include:

A. Economic Indicators

Economists, early on, focused on economic growth (and later on development), constructing theories centered on production factors, supply and demand dynamics, and production relationships. Key economic indicators include:

- National Economic Structure and Performance: This indicator evaluates a country's economic system by examining per capita income, export-to-GDP ratios, import levels, debt, and value-added in manufacturing industries,¹⁵ which collectively enhance production efficiency, increase the investment share of GDP, and expand the export base of goods and services.
- Shifts in Production and Consumption Patterns: Unsustainable consumption patterns dominate in the Global North, with resource-intensive production processes depleting natural resources globally. Changing these patterns is essential to conserve resources, ensure equitable access for all, and secure resources for future generations. This involves energy consumption per capita, accessibility of energy sources, transitioning from fossil fuels to renewable energy, and reducing hazardous industrial waste.¹⁶

B. Competitiveness Indicators

The Arab Planning Institute has developed competitiveness indicators to compare developing countries with advanced economies. These indicators assess added value in manufacturing, agricultural productivity, export-to-import ratios of goods and services, debt-to-GDP ratio, openness to foreign trade, transparency of international transactions, and levels of official development assistance provided or received.¹⁷

C. Social Indicators

Social indicators aim to create conditions that enable individuals and nations to achieve.¹⁸

- Social Equity and Wealth Distribution: Addressing inequality and poverty is critical. Two key measures include the proportion of the population below the poverty line and the wealth gap between rich and poor.
- Access to Healthcare: Universal healthcare access is essential, especially in rural and remote areas, where controlling endemic diseases and pollution-induced health issues

is vital. Healthcare progress is measured by maternal and child mortality rates, primary healthcare availability, life expectancy, and vaccination rates.

- Quality Education: Education, a fundamental human right, is crucial for sustainable development. Education systems should emphasize sustainable development goals, raise awareness among low-income groups, and demonstrate education's societal and individual benefits. Indicators of educational progress include literacy rates, educational continuity, and national spending on education and research.
- Housing and Population Growth: Rapid population growth and rural-to-urban migration can hinder sustainable development and disrupt economic and urban planning. Indicators here include population growth rate and per capita urban housing.
- Social Security and Crime Prevention: Social security relies on justice, democracy, and social peace. Crime rates per 1,000 individuals in the population serve as a measure of social security.

D. Institutional Indicators

- Institutional Framework: This involves creating institutional structures that support sustainable development by establishing national strategies and signing global agreements on sustainability.
- State Institutional Capacity: Effective development requires sufficient human, scientific, economic, and political resources.

E. Environmental Indicators

Environmental indicators address pressing environmental issues:¹⁹

- Atmospheric Changes: Issues such as global warming and ozone depletion are measured by CO₂ emissions and air quality improvements through international protocols like the Kyoto and Montreal agreements.
- Land Use: Sustainable land use involves preventing environmental degradation, combating desertification, halting deforestation, curbing urban encroachment on agricultural land, and promoting sustainable agricultural and forestry production.
- Water Resources Protection: Sustainable development requires combating overfishing, monitoring pollution levels, tracking annual water availability and loss, fostering fish populations, protecting endangered fish species, and addressing rising sea levels that threaten low-lying islands and coastal areas.

4. Dimensions of Sustainable Development:

According to the definition of sustainable development, it encompasses four interconnected and complementary dimensions that emphasize organized and rational resource utilization:

A. Economic Dimension

Sustainable development is achieved by supporting an economic system that rejects externally imposed development models that do not align with the community's identity and cultural values. An essential condition for the success of an economic plan, and for achieving sustainability, is community participation in development-related decisions.²⁰

In wealthy nations, sustainable development requires reducing energy and natural resource consumption by enhancing energy efficiency and shifting resource consumption patterns. In contrast, for poorer countries, sustainable development focuses on resource use to improve

living standards and reduce poverty, which is closely linked to environmental degradation and rapid population growth.²¹

Key actions to achieve economic sustainability include:²²

- Halting the depletion of natural resources and ensuring equitable distribution.
- Reducing the dependency of developing countries.
- Holding developed countries accountable for environmental pollution and its remediation.

B. Social Dimension

This dimension addresses the fundamental right of individuals to live in a clean, healthy environment and to have fair access to natural wealth, healthcare, and essential educational services, especially in rural areas. It emphasizes broad community participation in developing diverse cultures and enhancing societal development.

C. Technological Dimension

Sustainable development calls for a shift, particularly in industrialized nations, toward cleaner and more efficient technologies. Cleaner technology in industrial facilities is essential because industrial facilities often pollute surrounding air, water, and soil. In advanced countries, pollution reduction and waste treatment are achieved at substantial costs, whereas in developing nations, waste management remains largely unregulated. Sustainable development encourages cleaner industries and technologies that minimize energy and resource use and produce the least amount of pollutants and greenhouse gases.²³

D. Environmental Dimension

Environmental sustainability means protecting natural resources from overexploitation, reducing the use of fertilizers and pesticides that pollute surface and groundwater, and preventing the unsustainable harvesting of forests and fisheries.²⁴

It promotes the optimal use of agricultural land and water resources, safeguards endangered animal and plant species, and works to stabilize global climate conditions and preserve the ozone layer.

3. The Role of Renewable Energy in Achieving Sustainable Development:

The concept of sustainable development is deeply interconnected with the concept of access to sustainable (renewable) energy, making sustainable development unachievable without sustainable energy access. Energy is the world's largest industrial sector, representing 70% of global GDP, which is fundamental to the production of every good and service within the economy. Access to energy or lack thereof shapes the quality of life and is a major barrier to sustainable development where access is limited.

The Sustainable Energy for All initiative has identified three interconnected goals to be achieved by 2030, each essential for long-term sustainable development in energy access:

- Ensure universal access to modern energy services.
- Double the rate of improvement in energy efficiency.
- Increase the share of renewable energy in the global energy mix.

These goals align with the 7th Sustainable Development Goal (SDG), which seeks to ensure that everyone has affordable access to modern and sustainable energy. By 2030, specific targets under this goal include:²⁵

- Providing universal access to affordable, modern energy services.
- Increasing the global share of renewable energy.
- Doubling the global rate of energy efficiency improvement.
- Enhancing international cooperation in clean energy research and technology, including renewables.
- Expanding infrastructure and improving technology for sustainable, modern energy services.

Renewable energy redirects economic sectors towards environmentally sustainable practices, reducing pollution, encouraging waste recycling, and optimizing natural resource use. Renewable energy directly and indirectly supports the core dimensions of sustainable development in the following ways:

1. Renewable Energy and the Economic Dimension of Sustainable Development

Renewable energy contributes to the economic objectives of sustainable development by:

- Reducing Resource Misuse: According to a 2020 UN report, global economic growth in recent decades has significantly depleted natural resources, contributing to ecosystem degradation. Renewable energy sources help reduce the overuse of natural resources by providing sustainable alternatives.²⁶
- Alleviating Energy Poverty: Renewable energy technologies improve living standards and health in impoverished areas by reducing reliance on biomass, which helps protect the environment, reduce indoor pollution, and support sustainable waste management through biogas technologies.²⁷ The 2022 UN report on sustainable energy highlighted significant progress in clean energy access since 2010, with global electricity access rising from 83% in 2010 to 91% in 2020. During this period, the number of people without electricity dropped from 1.02 billion in 2018 to 733 million in 2020, with an annual electricity access growth rate of 0.5% (compared to 0.8% between 2010 and 2018).²⁸
- Reducing Industrial Pollution: Renewable energy in the industrial sector extends the lifespan of manufactured goods through redesign and recycling. Recycling secondary products from production processes can significantly cut energy requirements, such as aluminum recycling, which requires only 5% of the energy needed for primary production. Recycling high-temperature waste from coal, blast, and electric furnaces, as well as cement plants, presents an opportunity for short-term power generation, reducing waste and pollution.²⁹

2. Renewable Energy and the Social Dimension of Sustainable Development

Renewable energy supports the social goals of sustainable development by:

- Reducing Poverty: By managing natural resources and ecosystems wisely, renewable energy helps direct the benefits of natural capital directly to impoverished communities. It also creates new job opportunities, especially in sectors like industry, energy, transportation, and healthcare, particularly in developing countries. For instance:³⁰

- Solar and wind energy support groundwater-based agricultural activities.

- Access to clean water and sanitation in many developing countries improves health, productivity, and income for low-income populations.
- Lower energy generation and acquisition costs contribute to ending energy poverty.
- Ecotourism, powered by renewables, creates additional job opportunities and reduces unemployment.

-Increasing Employment and Supporting Social Equity: Renewables drive job growth across sectors by:

- Creating additional job opportunities.
- Generating about ten times more jobs through recycling than incineration or landfilling.
- Preserving natural resources, particularly water, through renewable energy investment.

- Providing Low-Carbon Transport Systems: This involves prioritizing:³¹

- Transport planning that links production and consumption locations.
- Transitioning to more efficient environmental modes like mass transit, rail, and sea transport.
- Improving fuel and vehicle technologies to minimize environmental impact.

3. Renewable Energy and the Environmental Dimension of Sustainable Development:

Renewable energy plays a key role in achieving the environmental goals of sustainable development by:

- Replacing Fossil Fuels with Low-Carbon, Sustainable Energy Sources: Investing in locally available renewable energy sources stabilizes fuel prices and improves energy security. This shift involves redirecting investments from carbon-intensive energy sources to clean energy. Increased investment in renewables can be supported through direct subsidies, tax exemptions, and emissions-trading systems that reflect the full social costs of using cleaner fuel, resulting in significant environmental, health, and economic benefits.³²
- Providing Access to Clean Cooking Fuels to Reduce Pollution: Renewable energy sources are expected to increase the global access rate to clean cooking fuels to 72% by 2030, significantly reducing indoor air pollution.³³
- Integrating Renewable Energy with Conventional Energy Sources: Energy storage solutions can facilitate the integration of renewable and traditional energy sources, enhancing the efficiency of hybrid energy systems to mitigate energy shortages, reduce pollution, and achieve energy sustainability.³⁴

The role of renewable energy in sustainable development is further underscored by key findings from the International Renewable Energy Agency (IRENA). The agency's proposed energy transition scenario lays out a sustainable, low-carbon, and climate-secure pathway to stable, long-term economic development. This scenario promotes job creation, economic growth, cleaner living conditions, and improved community well-being. By 2050, this transformative approach could help avoid up to 70% of energy sector-related carbon dioxide emissions globally, with over 90% of this reduction achievable through renewable energy and energy efficiency measures.

The energy transition has the potential to drive extensive economic and social advancements supported by comprehensive policies to reduce carbon emissions. Such an approach aligns emissions reduction targets in the energy sector with economic, environmental, and social

goals. A notable example of this strategy is the European Green Deal, which includes international support for clean energy³⁵, and economic incentives that could encourage more communities to adopt this pathway.

The ultimate global climate goal is to achieve carbon neutrality by completely eliminating carbon emissions post-2050. Achieving this will rely on critical factors such as hydrogen, direct electrification technologies, biofuels, and carbon management, along with innovative business models, structural changes, and behavioral adaptations.

Conclusion:

Countries worldwide place great importance on economic and technological growth, aiming to achieve these objectives without compromising the environment. Traditional energy sources, such as petroleum, coal, and gas, are environmentally harmful. Thus, the solution to maintaining economic and technological growth while preserving the environment lies in alternative energy sources that do not have adverse environmental impacts, such as solar, wind, and hydro energy.

Renewable energy sources help realign various economic sectors to be more environmentally conscious by reducing pollution, recycling waste, and optimizing natural resource use. In this way, renewable energy directly and indirectly supports the fundamental dimensions of sustainable development.

This study covered the following:

1. An introduction to the concept of sustainable development, which has become a global imperative.
2. The integration of economic, social, and environmental goals.
3. An exploration of the role renewable energy can play in achieving sustainable development.

The study arrived at the following conclusions:

1. Traditional energy sources do not meet the requirements for sustainable economic development or for sustainable development as a whole.
2. Sustainable development ensures equitable resource distribution among individuals within the current generation while enabling future generations to enjoy a clean, undiminished environment.
3. Sustainable economic development requires sufficient energy resources. However, given the current global energy structure—heavily reliant on fossil fuels to meet increasing energy demands—these resources are at risk of depletion within the coming decades, potentially leading to an unprecedented crisis.
4. The international community must reform prevailing energy policies and pursue effective diversification to preserve the environment and ensure that future generations have access to both traditional and renewable energy sources.

In summary, the use of renewable energy sources helps address environmental pollution, mitigate the impacts of climate change, and bolster global energy security, thereby supporting

sustainable development. Thus, renewable energy serves as a cornerstone of sustainable development.

References :

¹ Johns Hopkins, "Renewable Energy vs Sustainable Energy: What's the Difference?" School of Advanced International Studies, July 2, 2021, p.1.

² <https://www.iea.org/>

³ <https://www.ipcc.ch/languages-2/arabic/publications-arabic/>

⁴ United Nations Environment Programme website www.unep.org.

⁵ Renewable Energy "Technologies ucsusa.org"

⁶ Ali Al-Eissi, Bilal Sheikhi, "Renewable Energy as a Strategic Alternative to Traditional Energy," Journal of Economic and Financial Studies, Vol. 11, Issue 01, Martyr Hamma Lakhdar University, El-Oued, Algeria, 2018, p.195.

⁷ Banana Malawi, "A Guide to Renewable Energy in Egypt and Jordan," Friedrich-Ebert-Stiftung Jordan & Iraq, 2016, p.31.

⁸ Renewables 2014: Global Status Report (Paris: Renewable Energy Policy Network for the 21st Century, 2014, pp.13-17).

⁹ <https://www.iaea.org/ar/newscenter/news/ma-altaaqat-alnawawiatu-aleilm-wara-alqiwaa-alnawawia>

¹⁰ Noha Al-Khatib, Environmental Economics and Development, (Center for Public Administration Studies and Consultations: Faculty of Economics and Political Science, Cairo University, Non-periodical Papers, Issue 11, October 2005), p.112.

¹¹ Houari Abdelkader, Efficiency in the Use of Renewable Energy in Arab Economies: A Comparative Study of Economic Returns between Renewable and Non-Renewable Energies, Doctoral Thesis (Algeria: Nour Al-Bashir University Center, El Bayadh/Algeria, 2010), p.23.

¹² Sustainable Development, Al Jazeera Encyclopedia, <
<https://www.aljazeera.net/encyclopedia/conceptsandterminology/2015/11/30/%D8%A7%D9%84%D8%AA%D9%86%D9%85%D9%8A%D8%A9-%D8%A7%D9%84%D9%85%D8%B3%D8%AA%D8%AF%D8%A7%D9%85%D8%A9>>.

¹³ United Nations, "Sustainable Development Goals: 17 Goals to Transform Our World," General Assembly, October 21, 2015. Link: <http://www.un.org/sustainabledevelopment/>

¹⁴ Ayat Hanafi, How to Achieve Sustainable Development, last accessed: 01/06/2022.
<https://www.almrsal.com/post/937044#>

¹⁵ Wadie Mohammed Adnan, "Measuring Development and Its Indicators," Development Bridge Journal, Vol. 1, Issue 2, Publications of the Arab Planning Institute, Kuwait, February 2002, p.2.

¹⁶ Abdul Razak Fawzi, Bouroba Kaathia, "Sustainable Development and the Challenges of the Liberal System: Between Reality and Future Prospects," Papers and Research of the International Forum on Sustainable Development and the Efficient Use of Available Resources, Part 1, Faculty of Economic Sciences and Management Science, Setif University, held April 7-8, 2008, p.92.

¹⁷ Abdul Khaleq Abdullah, "Sustainable Development and the Relationship between Environment and Development," Center for Arab Unity Studies, Arab Future Book Series (13), First Edition, Beirut, 1998, p.244.

¹⁸ Othman Mohammed Ghoneim, Majda Abu Zant, "Sustainable Development: Its Philosophy, Planning Methods, Development Barriers, and Measurement Tools," Al-Safa Publishing, 2010, pp.30-31.

¹⁹ Mohammed Abdel Badi, Environmental Economics and Protection, Al-Amin Printing House, Egypt, 2001, p.316.

²⁰ Mahdi Saleh Dowai Al-Dulaimi, "Information and Communication Technology and Its Economic Dimensions," Unpublished PhD Thesis, Al-Mustansiriya University, Faculty of Management and Economics, 2006, p.5.

²¹ Abdel Moneim Ahmed Shukri, "Sustainable Development between Concept and Application," Faculty of Engineering, Cairo University, Egypt, 1988, p.22.

²² Abdelsalam Adeeb, The Dimensions of Sustainable Development, accessed at <http://ebooks9.com-doc-html>;

²³ Wadie Mohammed Adnan, "Measuring Development and Its Indicators," previous reference.

²⁴ Same Reference

²⁵ Vezzoli, Carlo, Fabrizio Ceschin, Lilac Osanjo, Mugendi K. M'Rithaa, Richie Moalosi, Venny Nakazibwe, 2018, Energy and Sustainable Development. https://doi.org/10.1007/978-3-319-70223-0_1

²⁶ United Nations, Sustainable Development Report, titled: "Global Forest Area is Declining, FAO Calls for Intensified Efforts to Halt Deforestation," Tuesday, 21-07-2020.

²⁷ United Nations, United Nations Environment Programme, Sustainable Energy Financing Initiative, Paris 2010.

²⁸ United Nations, Sustainable Development Goals Report 2022, "Ensure Access to Affordable, Reliable, Sustainable, and Modern Energy."

²⁹ Chalmin, P., and Gaillochet, C., "From Waste to Resource: An Abstract of World Waste Survey Cyclope," Veolia Environmental Services, Economica Edition, 2009, p.25.

³⁰ Molly Scott Cato, Translated by Alaa Ahmed Salah, Introduction to Theory, Policy, and Practice, (Arab Nile Group: Cairo, 2015), p.78.

³¹ Ayed Radhi Khnfar, Environmental Economics "Green Economy," Kuwait: National Petroleum Services Company, Asyut Journal for Environmental Studies, Issue 39, January 2014, p.21.

³² United Nations, United Nations Environment Programme, Sustainable Energy Financing Initiative, Paris 2010, p.34.

³³ United Nations, Sustainable Energy Report, titled: "Achieving the Goal of Universal Access to Sustainable Energy Remains out of Reach without Addressing Inequality," 7-6-2021, available at: <http://esmap.org.trackingSDG7>.

³⁴ Amjad Hina Fathima, "In Hybrid-Renewable Energy Systems in Microgrids, Renewable Systems and Energy Storages for Hybrid Systems," 2018, p.1.

³⁵ IRENA, 2021, Renewable Energy Statistics, International Renewable Energy Agency.

¹ Johns Hopkins, "Renewable Energy vs Sustainable Energy: What's the Difference?" School of Advanced International Studies, July 2, 2021, p.1.

² <https://www.iea.org/>

³ <https://www.ipcc.ch/languages-2/arabic/publications-arabic/>

⁴ United Nations Environment Programme website www.uneb.org.

⁵ Renewable Energy "Technologies ucsusa.org"

⁶ Ali Al-Eissi, Bilal Sheikhi, "Renewable Energy as a Strategic Alternative to Traditional Energy," Journal of Economic and Financial Studies, Vol. 11, Issue 01, Martyr Hamma Lakhdar University, El-Oued, Algeria, 2018, p.195.

⁷ Banana Malawi, "A Guide to Renewable Energy in Egypt and Jordan," Friedrich-Ebert-Stiftung Jordan & Iraq, 2016, p.31.

⁸ Renewables 2014: Global Status Report (Paris: Renewable Energy Policy Network for the 21st Century, 2014, pp.13-17).

⁹ <https://www.iaea.org/ar/newscenter/news/ma-altaaqat-alnawawiatu-aleilm-wara-alqiwaa-alnawawia>

¹⁰ Noha Al-Khatib, Environmental Economics and Development, (Center for Public Administration Studies and Consultations: Faculty of Economics and Political Science, Cairo University, Non-periodical Papers, Issue 11, October 2005), p.112.

¹¹ Houari Abdelkader, Efficiency in the Use of Renewable Energy in Arab Economies: A Comparative Study of Economic Returns between Renewable and Non-Renewable Energies, Doctoral Thesis (Algeria: Nour Al-Bashir University Center, El Bayadh/Algeria, 2010), p.23.

¹² Sustainable Development, Al Jazeera Encyclopedia, <<https://www.aljazeera.net/encyclopedia/conceptsandterminology/2015/11/30/%D8%A7%D9%84%D8%AA%D9%86%D9%85%D9%8A%D8%A9-%D8%A7%D9%84%D9%85%D8%B3%D8%AA%D8%AF%D8%A7%D9%85%D8%A9>>.

¹³ United Nations, "Sustainable Development Goals: 17 Goals to Transform Our World," General Assembly, October 21, 2015. Link: <http://www.un.org/sustainabledevelopment/>

¹⁴ Ayat Hanafi, How to Achieve Sustainable Development, last accessed: 01/06/2022. <https://www.almrsal.com/post/937044#>

¹⁵ Wadie Mohammed Adnan, "Measuring Development and Its Indicators," Development Bridge Journal, Vol. 1, Issue 2, Publications of the Arab Planning Institute, Kuwait, February 2002, p.2.

¹⁶ Abdul Razak Fawzi, Bouroba Kaathia, "Sustainable Development and the Challenges of the Liberal System: Between Reality and Future Prospects," Papers and Research of the International Forum on Sustainable Development and the Efficient Use of Available Resources, Part 1, Faculty of Economic Sciences and Management Science, Setif University, held April 7-8, 2008, p.92.

¹⁷ Abdul Khaleq Abdullah, "Sustainable Development and the Relationship between Environment and Development," Center for Arab Unity Studies, Arab Future Book Series (13), First Edition, Beirut, 1998, p.244.

¹⁸ Othman Mohammed Ghoneim, Majda Abu Zant, "Sustainable Development: Its Philosophy, Planning Methods, Development Barriers, and Measurement Tools," Al-Safa Publishing, 2010, pp.30-31.

¹⁹ Mohammed Abdel Badi, Environmental Economics and Protection, Al-Amin Printing House, Egypt, 2001, p.316.

²⁰ Mahdi Saleh Dowai Al-Dulaimi, "Information and Communication Technology and Its Economic Dimensions," Unpublished PhD Thesis, Al-Mustansiriya University, Faculty of Management and Economics, 2006, p.5.

²¹ Abdel Moneim Ahmed Shukri, "Sustainable Development between Concept and Application," Faculty of Engineering, Cairo University, Egypt, 1988, p.22.

²² Abdelsalam Adeeb, The Dimensions of Sustainable Development, accessed at <http://ebooks9.com-doc-html>;

²³ Wadie Mohammed Adnan, "Measuring Development and Its Indicators," previous reference.

²⁴ Same Reference

²⁵ Vezzoli, Carlo, Fabrizio Ceschin, Lilac Osanjo, Mugendi K. M'Rithaa, Richie Moalosi, Venny Nakazibwe, 2018, Energy and Sustainable Development. https://doi.org/10.1007/978-3-319-70223-0_1

²⁶ United Nations, Sustainable Development Report, titled: "Global Forest Area is Declining, FAO Calls for Intensified Efforts to Halt Deforestation," Tuesday, 21-07-2020.

²⁷ United Nations, United Nations Environment Programme, Sustainable Energy Financing Initiative, Paris 2010.

²⁸ United Nations, Sustainable Development Goals Report 2022, "Ensure Access to Affordable, Reliable, Sustainable, and Modern Energy."

²⁹ Chalmin, P., and Gaillochet, C., "From Waste to Resource: An Abstract of World Waste Survey Cyclope," Veolia Environmental Services, Economica Edition, 2009, p.25.

³⁰ Molly Scott Cato, Translated by Alaa Ahmed Salah, Introduction to Theory, Policy, and Practice, (Arab Nile Group: Cairo, 2015), p.78.

³¹ Ayed Radhi Khnfar, Environmental Economics "Green Economy," Kuwait: National Petroleum Services Company, Asyut Journal for Environmental Studies, Issue 39, January 2014, p.21.

³² United Nations, United Nations Environment Programme, Sustainable Energy Financing Initiative, Paris 2010, p.34.

³³ United Nations, Sustainable Energy Report, titled: "Achieving the Goal of Universal Access to Sustainable Energy Remains out of Reach without Addressing Inequality," 7-6-2021, available at: <http://esmap.org.trackingSDG7>.

³⁴ Amjed Hina Fathima, "In Hybrid-Renewable Energy Systems in Microgrids, Renewable Systems and Energy Storages for Hybrid Systems," 2018, p.1.

³⁵ IRENA, 2021, Renewable Energy Statistics, International Renewable Energy Agency.